▲ABC vuông cân tại A.Qua A kẻ đường thẳng d (d ko //BC) kẻ BH┴d CK┴d(H,K thuộc d)
Chứng minh:a)Góc HAB=KCA
b)▲HAB=▲KCA
c)HK=BH+CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) d = -9b nên P(3) = 27a + 9b + 3c + d = 27a + 3c ; P(-3) = -27a + 9b - 3c + d = -27a - 3c
=> P(3).P(-3) = (27a + 3c)(-27a - 3c) = -(27a + 3c)2\(\le0\)
b) Để\(A\in Z\)thì\(n+1⋮n^2+2\)nên bội của n + 1 là (n + 1)(n - 1) chia hết cho n2 + 2
\(\Rightarrow n^2+2-3⋮n^2+2\Rightarrow3⋮n^2+2\)mà\(n^2+2\ge2\)=> n2 + 2 = 3 => n2 = 1 => n = -1 ; 1.Thử lại :
n | -1 | 1 |
n + 1 | 0 | 2 |
n2 + 2 | 3 | 3 |
A | 0 (chọn) | \(\frac{2}{3}\)(loại) |
Vậy n = -1
B= x^2 +2.x.1/2 + 1/4 +3/4 = (x+1/2)^2 +3/4 >= 3/4 tìm được min là 3/4 khi x=1/2 nhe bạn.
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
Ta có tam giác ABC cân tại B
\(\Rightarrow\widehat{A}=\widehat{C}=\frac{180^0-\widehat{B}}{2}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)
Vì tam giác abc cân tại b nên góc A = góc C = (180-80)/2 = 50 độ