(2345-45)+2345
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7+x\right)-\left(21-13\right)=32\)
\(\left(7+x\right)-8=32\)
\(7+x=32+8\)
\(7+x=40\)
\(x=40-7\)
\(x=33\)
Vậy \(x=33\)
\(\left(7+x\right)-\left(21-13\right)=32\)
\(7+x-21+13=32\)
\(x+\left(7+13-21\right)=32\)
\(x-1=32\)
\(x=33\)
\(-11-\left(19-x\right)=50\)
\(-11-19+x=50\)
\(x-\left(11+19\right)=50\)
\(x-30=50\)
\(x=50+30\)
\(x=80\)
\(-11-\left(19-x\right)=50\Leftrightarrow19-x=-11-50=-61\Leftrightarrow x=19+61=80\)
= -1+ ( -1 ) + ( -1 ) + ( -1 ) + ( -1 )
= -2 + ( -3)
= - 5
chúc bạn học tốt
\(12\cdot4^3+16\cdot2\\ =12\cdot4^3+4^2\cdot2\\ =4^2\cdot\left(12\cdot4+2\right)\\ =4^2\cdot\left(48+2\right)\\ =4^2\cdot50\\ =16\cdot50\\ =800\)
\(\left[100:\left(3^3-2\right)\right]-4\)
\(=\left[100:\left(27-2\right)\right]-4\)
\(=\left(100:25\right)-4\)
\(=4-4\)
\(=0\)
\(\left[100:\left(3^3-2\right)\right]-4\)
\(=\left[100:\left(27-2\right)\right]-4\)
\(=\left[100:25\right]-4\)
\(=4-4\)
\(=0\)
1: \(\dfrac{3}{4}:\dfrac{1}{2}+x=\dfrac{2}{3}\)
=>\(x+\dfrac{3}{4}\cdot2=\dfrac{2}{3}\)
=>\(x+\dfrac{3}{2}=\dfrac{2}{3}\)
=>\(x=\dfrac{2}{3}-\dfrac{3}{2}=\dfrac{4}{6}-\dfrac{9}{6}=-\dfrac{5}{6}\)
2: \(\dfrac{7}{4}+\dfrac{1}{4}:x=2\)
=>\(\dfrac{1}{4}:x=2-\dfrac{7}{4}=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{1}{4}=1\)
3: \(\dfrac{48}{64}:\dfrac{12}{16}+0,25=\dfrac{3}{4}:\dfrac{3}{4}+0,25=1+0,25=1,25\)
4: \(\dfrac{3}{4}\cdot\dfrac{6}{9}+\dfrac{7}{12}\cdot6=\dfrac{18}{36}+\dfrac{7}{2}=\dfrac{1}{2}+\dfrac{7}{2}=\dfrac{8}{2}=4\)
5: \(5\cdot\dfrac{x}{6}-\dfrac{1}{4}=\dfrac{7}{2}\)
=>\(\dfrac{5}{6}x=\dfrac{7}{2}+\dfrac{1}{4}=\dfrac{15}{4}\)
=>\(x=\dfrac{15}{4}:\dfrac{5}{6}=\dfrac{15}{4}\cdot\dfrac{6}{5}=\dfrac{3}{2}\cdot3=\dfrac{9}{2}\)
6: \(\dfrac{3}{x+1}-\dfrac{1}{4}=\dfrac{7}{4}\)(ĐKXĐ: x<>-1)
=>\(\dfrac{3}{x+1}=\dfrac{7}{4}+\dfrac{1}{4}=\dfrac{8}{4}=2\)
=>\(x+1=\dfrac{3}{2}\)
=>\(x=\dfrac{1}{2}\left(nhận\right)\)
\(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{103\cdot105}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{103}-\dfrac{1}{105}\)
\(=\dfrac{1}{3}-\dfrac{1}{105}=\dfrac{34}{105}\)
\(P=\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{103\times105}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{103}-\dfrac{1}{105}\)
\(=\dfrac{1}{3}-\dfrac{1}{105}=\dfrac{34}{105}\)
Công thức: \(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(\left(2345-45\right)+2345\)
\(=2300+2345\)
\(=4645\)
\(\left(2345-45\right)+2345\)
\(=2300+2345\)
\(=4645\)