Cho tam giác ABC có AB=10cm, AC=24cm, BC=26cm
a) Tính số đo các góc B và C
b) gọi AD là đg p/g của tam giác ABC. Tính DC, DB
c) Từ D kẻ DE, DF lần lượt vg góc vs AB, AC. Tứ giác AEDF là hình j? Tính chu vi và diện tích AEDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow36+x^4-12x^2-6+x=0\)
\(\Leftrightarrow x^4-12x^2+x+30=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-8x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-8x-15\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)-x\left(x+3\right)-5\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2-x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-3\left(l\right)\end{cases}}\)
Phần \(x^2-x-5=0\)sử dụng công thức delta
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{21}}{2}\left(l\right)\\x=\frac{1-\sqrt{21}}{2}\left(tm\right)\end{cases}}\)
Kết luận .....
a) \(\sqrt{x^2-6x+9}=3\)
⇔ \(\sqrt{\left(x-3\right)^2}=3\)
⇔ \(\left|x-3\right|=3\)
⇔ \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
b) \(\sqrt{x^2-8x+16}=x+2\)
⇔ \(\sqrt{\left(x-4\right)^2}=x+2\)
⇔ \(\left|x-4\right|=x+2\)
⇔ \(\orbr{\begin{cases}x-4=x+2\left(x\ge4\right)\\4-x=x+2\left(x< 4\right)\end{cases}\Leftrightarrow}x=1\)
c) \(\sqrt{x^2+6x+9}=3x-6\)
⇔ \(\sqrt{\left(x+3\right)^2}=3x-6\)
⇔ \(\left|x-3\right|=3x-6\)
⇔ \(\orbr{\begin{cases}x-3=3x-6\left(x\ge3\right)\\3-x=3x-6\left(x< 3\right)\end{cases}}\Leftrightarrow x=\frac{9}{4}\)
d) \(\sqrt{x^2-4x+4}-2x+5=0\)
⇔ \(\sqrt{\left(x-2\right)^2}-2x+5=0\)
⇔ \(\left|x-2\right|-2x+5=0\)
⇔ \(\orbr{\begin{cases}x-2-2x+5=0\left(x\ge2\right)\\2-x-2x+5=0\left(x< 2\right)\end{cases}}\Leftrightarrow x=3\)
a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)
b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.