Cho tam giác FEG vuông tại E có đường cao EH. FH=3cm, EF=5cm. Tính EG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`12x + 6/7 : 2 = 9x + 8`
`=> 12x + 3/7 - 9x = 8`
`=> 3x = 8 - 3/7`
`=> 3x = 53/7`
`=> x = 53/7 : 3`
`=> x = 53/7 . 1/3`
`=> x= 53/21`
Vậy ..
Nửa chu vi mảnh đất là 20:2=10(m)
Chiều dài mảnh đất là (10+2):2=12:2=6(m)
Chiều rộng mảnh đất là 6-2=4(m)
Diện tích mảnh đất là 6x4=24(m2)
Tổng chiều dài và chiều rộng là :
20 x 2 = 40 (m)
Do chiều dài hơn chiều rộng 2 m
2 lần chiều dài là :
40 + 2 = 42 (m)
chiều dài là :
42 : 2 = 21 (m)
chiều rộng là:
40 - 26 = 19(m)
diện tích mảnh đất là
21 x 19 = 399 ( m2)
Đáp số là: 399m2
\(\dfrac{x+5}{97}+\dfrac{x+5}{98}+\dfrac{x+5}{99}=0\\
\Rightarrow\left(x+5\right).\left(\dfrac{1}{97}+\dfrac{1}{98}+\dfrac{1}{99}\right)=0\)
Vì \(\dfrac{1}{97}+\dfrac{1}{98}+\dfrac{1}{99}\ne0\) nên:
\(x+5=0\\
\Rightarrow x=-5\)
Vậy...
\(\dfrac{x+5}{97}+\dfrac{x+5}{98}+\dfrac{x+5}{99}=0\)
=>\(\left(x+5\right)\left(\dfrac{1}{97}+\dfrac{1}{98}+\dfrac{1}{99}\right)=0\)
=>x+5=0
=>x=-5
Tổng ba số là:
\(84\times3=252\)
Số thứ ba hơn số thứ hai:
\(24+9=33\) (đơn vị)
Gọi số thứ ba là \(b\)
Ta có:
\(b+\left(b-9\right)+\left(b-33\right)=252\)
\(\Rightarrow3b-42=252\)
\(\Rightarrow3b=294\)
\(\Rightarrow b=96\)
Với mọi x;y dương ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\) (1)
Đồng thời cũng suy ra: \(x+y\ge2\sqrt{xy}\) (2)
Gọi biểu thức đã cho là P, áp dụng BĐT (1) ta được:
\(P=\dfrac{\left(a+b\right)^2}{4c^2}+\dfrac{\left(b+c\right)^2}{4d^2}+\dfrac{\left(c+d\right)^2}{4a^2}+\dfrac{\left(d+a\right)^2}{4b^2}\)
\(P\ge\dfrac{4ab}{4c^2}+\dfrac{4bc}{4d^2}+\dfrac{4cd}{4a^2}+\dfrac{4da}{4b^2}=\dfrac{ab}{c^2}+\dfrac{bc}{d^2}+\dfrac{cd}{a^2}+\dfrac{da}{b^2}\)
Áp dụng tiếp BĐT (2):
\(P\ge2\sqrt{\dfrac{ab.bc}{c^2d^2}}+2\sqrt{\dfrac{cd.da}{a^2b^2}}\ge2\left(2\sqrt{\sqrt{\dfrac{ab.bc}{c^2d^2}}.\sqrt{\dfrac{cd.da}{a^2b^2}}}\right)=4\)
\(P_{min}=4\) khi \(a=b=c=d\)
\(2\left(x-3\right)-\left(4x-1\right)=0\)
\(2x-6-4x+1=0\)
\(-2x-5=0\)
\(2x=-5\)
\(x=-\dfrac{5}{2}\)
\(2\cdot\left(x-3\right)-\left(4\cdot x-1\right)=0\\ \Rightarrow2x-6-4x+1=0\\ \Rightarrow\left(2x-4x\right)+\left(-6+1\right)=0\\ \Rightarrow-2x-5=0\\ \Rightarrow-2x=5\\ \Rightarrow x=-\dfrac{5}{2}\)
Phân số chỉ quãng đường giờ thứ 3 đi được là :
1 - ( 1/4 + 1/3 ) = 5/12
Quãng đường dài số km là :
50 : 5/12 = 120 ( km )
Đáp số : 120 km
ΔEHF vuông tại H
=>\(HE^2+HF^2=EF^2\)
=>\(HE=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔHEG vuông tại H và ΔHFE vuông tại H có
\(\widehat{HEG}=\widehat{HFE}\left(=90^0-\widehat{G}\right)\)
Do đó: ΔHEG~ΔHFE
=>\(\dfrac{HE}{HF}=\dfrac{HG}{HE}\)
=>\(HE^2=HF\cdot HG\)
=>\(HG=\dfrac{4^2}{3}=\dfrac{16}{3}\left(cm\right)\)
ΔEHG vuông tại H
=>\(HE^2+HG^2=EG^2\)
=>\(EG=\sqrt{\left(\dfrac{16}{3}\right)^2+4^2}=\dfrac{8\sqrt{13}}{3}\left(cm\right)\)