K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2020

Giải thích các bước giải:

Gọi HH là hình chiếu của OO trên đồ thị hàm số y=(1−3m)x+my=(1−3m)x+m

 Ta có:

y=(1−3m)x+m=m(1−3x)+xy=(1−3m)x+m=m(1−3x)+x có đồ thị là đường (d)(d)

Nhận thấy: Đồ thị hàm số trên luôn đi qua điểm A(13;13)A(13;13) cố định với mọi mm

Lại có:

OH≤OAOH≤OA (Quan hệ đường xiên - đường vuông góc)

⇒MaxOH=OA⇒MaxOH=OA

Mà: OA=√(13−0)2+(13−0)2=√23OA=(13−0)2+(13−0)2=23

⇒MaxOH=√23⇒MaxOH=23

Dấu bằng xảy ra

⇔H≡A⇔OA⊥(d)⇔H≡A⇔OA⊥(d)

Mà đường OAOA là đồ thị hàm số y=xy=x nên 

OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23

Vậy m=23m=23

imagerotate

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)