\(Q=\frac{2}{x}+\frac{3}{y}+\frac{6}{3x+2y}\)
cho \(xy=6;x>0;y>0\)
tìm gtnn của Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 2 60 o D K B O H E E
a) Tam giác ABC đều => \(\widehat{B}=\widehat{C}=60^o\)
+) BDO có : \(\widehat{B}+\widehat{D_1}+\widehat{BOD}=180^o\)
\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}-\widehat{BOD}\)
\(=180^o-60^o-\widehat{BOD}\)
\(=120^o-\widehat{BOD}\left(1\right)\)
Ta lại có :
\(\widehat{BOD}+\widehat{DOE}+\widehat{EOC}=\widehat{BOC}=180^o\)
\(\Rightarrow\widehat{EOC}=180^o-\widehat{DOE}-\widehat{BOD}\)
\(=180^o-60^o-\widehat{BOD}\)
\(=120^o-\widehat{BOD}\)
Từ (1) và (2) , ta có : \(\widehat{D_1}=\widehat{EOC}\)
Tam giác BOD và CEO có :
\(\widehat{B}=\widehat{C}=60^o\)
\(\widehat{D_1}=\widehat{EOC}\left(cmt\right)\)
\(\Rightarrow\Delta BOD~\Delta CEO\)
\(\Rightarrow\frac{BO}{CE}=\frac{BD}{CO}\)
\(\Rightarrow BD.CE=BO.CO=\frac{BC^2}{4}\)( không đổi )
b) \(\Delta BOD~\Delta CEO\)
\(\Rightarrow\frac{OD}{EO}=\frac{BD}{CO}\)
mà \(CO=BO\Rightarrow\frac{OD}{EO}=\frac{BD}{BO}\)
Tam giác BOD và OED có :
\(\widehat{B}=\widehat{O}\left(=60^o\right)\)
\(\frac{BD}{BO}=\frac{OD}{OE}\)
\(\Rightarrow\Delta BOD~\Delta OED\)
\(\Rightarrow\widehat{BDO}=\widehat{ODE}\)
=> OD là tia phân giác của góc BDE
c)
Gọi đường tròn tâm O tiếp xúc với AB có bán kính R
Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB
=> R = OK
O thuộc đường phân giác của góc BDE
=> OH = OK.
=> OH = R
=> DE tiếp xúc với (O; R) ( đpcm )
\(\hept{\begin{cases}3x+5y=20\\3x+4y=18\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{20-5y}{3}\\y=2\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{10}{3}\\y=2\end{cases}}\)
Vậy: ...
\(\hept{\begin{cases}3x+5y=20\left(1\right)\\3x+4y=-18\left(2\right)\end{cases}}\)
Lấy (1) - (2) theo vế :
<=> y = 38
Thế y = 2 vào (1)
<=> 3x + 5.38 = 20
<=> 3x + 190 = 20
<=> 3x = -170
<=> x = -170/3
Vậy hpt có nghiệm duy nhất \(\hept{\begin{cases}x=-\frac{170}{3}\\y=38\end{cases}}\)