nhanh nha, giúp mik vs, chi tiết, mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài:1+3+5+...+199
Tổng trên có số số hạng là: (199-1):2+1=100 (số hạng)
Kết quả của tổng trên là: (199+1)x100:2=10000
Vậy 1+3+5+...+199=10000
\(1+3+5+...+199=\left(\left(199-1\right):2+1\right)\left(199+1\right):2=100.200:2=10000\)
`@` `\text {Ans}`
`\downarrow`
`j)`
\(x^{17}\div x^{12}=x^{17-12}=x^5\)
`k)`
\(x^8\div x^5=x^{8-5}=x^3\)
`r)`
\(a^5\div a^5=a^{5-5}=a^0=1\)
`l)`
\(x^4\div x=x^{4-1}=x^3\)
`m)`
\(x^7\div x^6=x^{7-6}=x\)
`n)`
\(x^9\div x^9=x^{9-9}=x^0=1\)
`o)`
\(a^{12}\div a^5=a^{12-5}=a^7\)
`p)`
\(a^8\div a^6=a^{8-6}=a^2\)
`q)`
\(a^{10}\div a^7=a^{10-7}=a^3\)
`r(2),`
\(1024\div4=2^{10}\div2^2=2^8\)
`t)`
\(512\div2^3=2^9\div2^3=2^6\)
a) \(\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{11}{21}\)
\(\Rightarrow x=\dfrac{3\cdot11}{21}\)
\(\Rightarrow x=\dfrac{33}{21}\)
\(\Rightarrow x=\dfrac{11}{7}\)
b) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{5\cdot1}{5}\)
\(\Rightarrow x=1\)
`@` `\text {Ans}`
`\downarrow`
\(x+\dfrac{1}{6}=\dfrac{-3}{8}\)
`=>`\(x=\dfrac{-3}{8}-\dfrac{1}{6}\)
`=>`\(x=-\dfrac{13}{24}\)
Vậy, `x =`\(-\dfrac{13}{24}\)
\(x+\dfrac{1}{6}=-\dfrac{3}{8}\)
\(\Rightarrow x=\dfrac{-3}{8}-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{13}{24}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)
`=`\(\dfrac{2}{9}\)
Vậy, \(A=\dfrac{2}{9}\)
`b)`
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
Vậy, \(B=\dfrac{4}{25}\)
`c)`
\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)
`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy, \(C=\dfrac{99}{100}\)
a) \(2^5\cdot2^7\)
\(=2^{5+7}\)
\(=2^{12}\)
b) \(2^3\cdot2^2\)
\(=2^{3+2}\)
\(=2^5\)
c) \(2^4\cdot2^3\cdot2^5\)
\(=2^{4+3+5}\)
\(=2^{12}\)
d) \(2^2\cdot2^4\cdot2^6\cdot2\)
\(=2^{2+4+6+1}\)
\(=2^{13}\)
e) \(2\cdot2^3\cdot2^7\cdot2^4\)
\(=2^{1+3+7+4}\)
\(=2^{15}\)
f) \(3^8\cdot3^7\)
\(=3^{8+7}\)
\(=3^{15}\)
g) \(3^2\cdot3\)
\(=3^{2+1}\)
\(=3^3\)
h) \(3^4\cdot3^2\cdot3\)
\(=3^{4+2+1}\)
\(=3^7\)
I) \(3\cdot3^5\cdot3^4\cdot3^2\)
\(=3^{1+5+4+2}\)
\(=3^{12}\)
`@` `\text {Ans}`
`\downarrow`
`A.`
`100-99+98-97+96-95+...+4-3+2-1 ?`
Ta có:
Số phần tử của bt trên là: `(100 - 1) \div 1 + 1 = 100 (\text {phần tử})`
Mà mỗi phần tử ghép với nhau thành `1` cặp
`=>` `100 \div 2 = 50 (\text {cặp})`
`100-99+98-97+96-95+...+4-3+2-1 `
`= (100 - 99) + (98 - 97) + ... + (4-3) + (2-1)`
`= 1+1+1 + ... + 1 + 1`
Mà bt trên có `50` cặp
`=>` Có `50` số `1`
`=>` Giá trị của bt trên là `50`
`B.`
`100-98+96-94+...+4-2`
Ta có:
Số phần tử của bt trên là: `(100 - 2) \div 2 + 1 = 50 (\text {phần tử})`
Mỗi phần tử ghép với nhau thành `1` cặp
`=> 50 \div 2 = 25 (\text {cặp})`
`100-98+96-94+...+4-2`
`= (100 - 98) + (96 - 94) + ... + (4 -2)`
`= 2 + 2 + ... + 2`
Mà bt trên có `25` cặp
`=>` Giá trị của bt trên là: `2 \times 25 = 50.`
d) 5.4³ + 2.3 - 81.2 + 7
= 5.64 + 6 - 162 + 7
= 320 + 6 - 162 + 7
= 326 - 162 + 7
= 164 + 7
= 171
e) [(33 - 3) : 3]³⁺³
= (30 : 3)⁶
= 10⁶
= 1000000
g) 2⁵ + 2.{12 + 2.[3.(5 - 2) + 1] + 1} + 1
= 32 + 2.[12.(3.3 + 1) + 1] + 1
= 32 + 2.(12.10 + 1) + 1
= 32 + 2.121 + 1
= 32 + 242 + 1
= 275
Lời giải:
a. $2^3.8=2^3.2^3=2^6$
b. $5^2.25=5^2.5^2=5^4$
c. $27:3^2=3^3:3^2=3^1$
d. $4^2.16=4^2.4^2=4^4$
e. $5^3.5^6=5^9$
f. $3^4.3=3^5$
g.$3^5.4^5=(3.4)^5=12^5$
h. $8^5.2^3=(2^3)^5.2^3=2^{15}.2^3=2^{18}$
i. $a^3.a^5=a^8$
j. $x^7.x.x^4=x^{7+1+4}=x^{12}$
k. $5^6:5^3=5^3$
l. $3^{15}:3^3=3^{15-3}=3^{12}$
m. $4^6:4^6=4^0=1$
n. $9^8:3^2=(3^2)^8:3^2=3^{16}:3^2=3^{14}$
o. $a:a=a^0=1$
p. $5^8.5.5^2=5^{8+1+2}=5^{11}$
q. $4.4^3=4^4$
r. $3.3^4=3^5$
s. $36.6^5=6^2.6^5=6^7$
t. $2^5.2^3=2^8$
u. $3^{10}:3^3=3^7$
v. $2^{10}:2^3=2^7$
w. $5^8:25=5^8:5^2=5^6$
x. $16:2^3=2^4:2^3=2^1$
y. $4.2^3=2^2.2^3=2^5$
z. $2^{10}:4=2^{10}:2^2=2^8$