Rút gọn E
E=\(\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=a+\frac{1}{a}=\frac{a}{4}+\frac{1}{a}+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3a}{4}\ge2\sqrt{\frac{1}{4}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra <=> a = 2
=> MinP = 5/2, đạt được khi a = 2
Xét hiệu : \(P-\left(2+\frac{1}{2}\right)=a+\frac{1}{a}-2-\frac{1}{2}\)
\(=\left(a-2\right)+\left(\frac{1}{a}-\frac{1}{2}\right)\)
\(=\left(a-2\right)+\frac{2-a}{2a}\)
\(=\left(a-2\right)\left(1-\frac{1}{2a}\right)\)
Vì \(a\ge2\) \(\Rightarrow\hept{\begin{cases}a-2\ge0\\1-\frac{1}{2a}>0\end{cases}}\)
\(\Rightarrow\left(a-2\right)\left(1-\frac{1}{2a}\right)\ge0\)
\(\Rightarrow P\ge2+\frac{1}{2}\)
Dẫu "=" xảy ra \(\Leftrightarrow a=2\)
Vậy \(MinP=2+\frac{1}{2}=\frac{5}{2}\Leftrightarrow a=2\)
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
Do x,y∈Z và 3x+2y=1 ⇒xy<0
3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)
Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)
⇒x = 1 - 2t ; y = 3t - 1
khi đó : H = t\(^2\) -3t + |t| -1
nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2
Dấu "=" xảy ra ⇔t=1
nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2
vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)
\(E=\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}+\frac{x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{-\sqrt{x}\left(1-x\right)+\left(x-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
Dể rồi làm nốt nhé, ngại v