Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A,B là giao điểm cuả đồ thị hàm số y=5x+4 với Ox và Oy.Vậy diện tích tam giác AOB bằng bao nhiêu
A là giao điểm với Ox \(\Rightarrow y_A=0\Rightarrow5x_A+4=0\Rightarrow x_A=-\dfrac{4}{5}\)
\(\Rightarrow OA=\left|x_A\right|=\dfrac{4}{5}\)
B là giao điểm với Oy \(\Rightarrow x_B=0\Rightarrow y_B=5.0+4=4\)
\(\Rightarrow OB=\left|y_B\right|=4\)
Tam giác OAB vuông tại O nên có diện tích
\(S=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{4}{5}.4=\dfrac{8}{5}\)
A= 1/200 x ( 3 +8+13+...+195+198)
Từ 3 đến 198 có số số hạng là: (198 - 3) : 5 + 1 = 40 số hạng
Tổng của dãy số 3 +8+13+...+195+198 là: (198+3)x40:2=4020
A = 1/200 x 4020=20,1
xong rồi:)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: Ta có: ED//AH
AH\(\perp\)BC
Do đó: ED\(\perp\)BC
Xét ΔHAD vuông tại H có HA=HD
nên ΔHAD vuông cân tại H
Xét tứ giác EDBA có \(\widehat{EDB}+\widehat{EAB}=90^0+90^0=180^0\)
nên EDBA là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
Gọi số cây bút chì ban đầu là x(cây)
(ĐK: \(x\in Z^+\))
Số cây bút trên kệ lúc này là 30+5=35(cây)
Số cây bút chì sau đó trên kệ là x+5(cây)
Theo đề, ta có: \(\dfrac{x+5}{35}=\dfrac{5}{7}\)
=>x+5=25
=>x=20(nhận)
Vậy: Số cây bút chì ban đầu là 20 cây
\[ \frac{8}{15} \times 1.25 = \frac{8}{15} \times \frac{5}{4} = \frac{8 \times 5}{15 \times 4} = \frac{40}{60} = \frac{2}{3} \]
\[ \frac{5}{9} \times \frac{17}{7} = \frac{5 \times 17}{9 \times 7} = \frac{85}{63} \]
\[ \frac{2}{3} + \frac{85}{63} \]
\[ \frac{2}{3} + \frac{85}{63} = \frac{2 \times 21}{3 \times 21} + \frac{85}{63} = \frac{42}{63} + \frac{85}{63} \]
\[ \frac{42}{63} + \frac{85}{63} = \frac{42 + 85}{63} = \frac{127}{63} \]
So, \( \frac{8}{15} \times 1.25 + \frac{5}{9} \times \frac{17}{7} = \frac{127}{63} \).
a.
\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp BD\\BD\perp AC\left(\text{hai đường chéo hv}\right)\end{matrix}\right.\)
\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SA\)
Mà \(SA\perp OP\left(gt\right)\)
\(\Rightarrow SA\perp\left(PBD\right)\)
b.
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\Rightarrow OC=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow SO=\sqrt{SC^2-OC^2}=\dfrac{a\sqrt{14}}{2}\)
\(V=\dfrac{1}{3}SO.AB.AD=\dfrac{a^3\sqrt{14}}{6}\)
c.
Chắc đề ghi nhầm, (SCD) là mặt chứ đâu phải đường
Gọi E là trung điểm CD, tam giác SCD cân tại S \(\Rightarrow SE\perp CD\)
Tam giác OCD cân tại O \(\Rightarrow OE\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SEO}\) là góc giữa (SCD) và (ABCD)
\(OE=\dfrac{1}{2}AD=\dfrac{a}{2}\) (đường trung bình)
\(tan\widehat{SEO}=\dfrac{SO}{OE}=\sqrt{14}\Rightarrow\widehat{SEO}\approx75^02'\)
d.
\(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)\)
Trong tam giác vuông SEO, từ O kẻ \(OH\perp SE\) (1)
Theo cmt, \(CD\perp\left(SEO\right)\Rightarrow CD\perp OH\) (2)
(1);(2) \(\Rightarrow OH\perp\left(SCD\right)\Rightarrow OH=2\left(O;\left(SCD\right)\right)\)
Hệ thức lượng:
\(OH=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{210}}{30}\)
\(\Rightarrow d\left(A;\left(SCD\right)\right)=2OH=\dfrac{a\sqrt{210}}{15}\)
//Ko hiểu đề cho 2 điểm M và N làm gì, ko liên quan gì đến toàn bộ 4 câu hỏi luôn
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE và DA=DE
Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAM=ΔDEC
=>DM=DC và AM=EC
Ta có: DM=DC
=>D nằm trên đường trung trực của MC(1)
Ta có: BA+AM=BM
BE+EC=BC
mà BA=BE và AM=EC
nên BM=BC
=>B nằm trên đường trung trực của MC(2)
Từ (1),(2) suy ra BD là đường trung trực của MC