K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2024

Hình vuông như hình, thế hình đâu em?

21 tháng 6 2024

Phải có hình chứ bạn

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>DA=DM

mà DM<DC(ΔDMC vuông tại M)

nên DA<DC

c: ΔBAD=ΔBMD

=>BA=BM 

=>ΔBAM cân tại B

Ta có: ΔBAM cân tại B

mà BI là đường phân giác

nên BI\(\perp\)AM và I là trung điểm của AM

Ta có: BI\(\perp\)AM

ME\(\perp\)AM

Do đó: ID//ME

Xét ΔAME có

I là trung điểm của AM

ID//ME

Do đó: D là trung điểm của AE

Xét ΔAME có

AK,EI,MD là các đường trung tuyến

Do đó: AK,EI,MD đồng quy

21 tháng 6 2024

a) Nữa chu vi mảnh đất là:

90 : 2 = 45 (m) 

Tổng số phần bằng nhau là:

2 + 3 = 5 (phần)

Chiều rộng là:

45 : 5 x 2 = 18 (m)

Chiều dài là:

45 - 18 = 27 (m)

Diện tích mảnh đất là:

18 x 27 = 486 `(m^2)` 

b) Diện tích trồng rau là:

20% x 486 = 97,2 `(m^2)` 

Diện tích trồng hoa là:

`2/9 xx 486 = 108 (m^2)` 

Diện tích trồng cây ăn quả là:

486 - 97,2 - 108 = 280,8 `(m^2)`

ĐS: ... 

21 tháng 6 2024

gấp ạa

21 tháng 6 2024

2B. 

a) \(A=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}\)

\(=\dfrac{3}{8}+\dfrac{5}{8}\)

\(=\dfrac{8}{8}\)

\(=1\)

b) \(B=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}-\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{2\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)

\(=\dfrac{1}{3}\cdot\dfrac{2\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}{3\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}\)

\(=\dfrac{1}{3}\cdot\dfrac{2}{3}\)

\(=\dfrac{2}{9}\)

3A:

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}=\dfrac{-1}{10}>-\dfrac{1}{9}\)

3B:

\(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\cdot\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)

\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)

Vì 20<21 nên \(\dfrac{11}{20}>\dfrac{11}{21}\)

=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)

=>\(B< -\dfrac{11}{21}\)

21 tháng 6 2024

\(2,5-3x=5,5.2022^0\)

\(=>2,5-3x=5,5.1\)

\(=>2,5-3x=5,5\)

\(=>3x=2,5-5,5\)

\(=>3x=-3\)

\(=>x=\left(-3\right):3\)

\(=>x=\dfrac{-3}{3}=-1\)

Vậy...

\(#NqHahh\)

21 tháng 6 2024

\(2,5-3x=5,5\cdot2022^0\)

\(2,5-3x=5,5\cdot1\)

\(2,5-3x=5,5\)

\(3x=2,5-5,5\)

\(3x=-3\)

\(x=-3:3\)

\(x=-1\)

Vậy \(x=-1\)

21 tháng 6 2024
A. $x = \dfrac{-9}{4}$ B. $x = \dfrac{-15}{4}$ C. $x = \dfrac{15}{4}$ D. $x = \dfrac{9}{4}$
21 tháng 6 2024

A. $x = \dfrac{-9}{4}$ B. $x = \dfrac{-15}{4}$ C. $x = \dfrac{15}{4}$ D. $x = \dfrac{9}{4}$

a: Vì O thuộc tia đối của tia AB

nên A nằm giữa O và B

=>OB=OA+AB=4+6=10(cm)

M là trung điểm của OA

=>\(OM=MA=\dfrac{OA}{2}=\dfrac{4}{2}=2\left(cm\right)\)

N là trung điểm của OB

=>\(ON=NB=\dfrac{OB}{2}=5\left(cm\right)\)

Vì OM<ON

nên M nằm giữa O và N

=>OM+MN=ON

=>MN+2=5

=>MN=3(cm)

b: \(MN=ON-OM=\dfrac{OB-OA}{2}=\dfrac{BA}{2}\)

=>MN không phụ thuộc vào điểm O

c: Gọi số điểm phải lấy thêm là n(điểm)

Tổng số điểm trên đoạn thẳng AB lúc này là n+2(điểm)

Số tam giác tạo thành là \(C^2_{n+2}\left(tamgiác\right)\)

Theo đề, ta có: \(C^2_{n+2}=465\)

=>\(\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=465\)

=>(n+1)(n+2)=930

=>\(n^2+3n-928=0\)

=>\(\left[{}\begin{matrix}n=29\left(nhận\right)\\n=-32\left(loại\right)\end{matrix}\right.\)

Vậy: Số điểm phải lấy thêm là 29 điểm

a: \(-1,2+\dfrac{2}{3}+x=5\)

=>\(x=5+1,2-\dfrac{2}{3}=6,2-\dfrac{2}{3}\)

=>\(x=\dfrac{31}{5}-\dfrac{2}{3}=\dfrac{93}{15}-\dfrac{10}{15}=\dfrac{83}{15}\)

b: \(2\dfrac{4}{7}-3x=\dfrac{-4}{5}+\dfrac{2}{3}\)

=>\(\dfrac{18}{7}-3x=\dfrac{-12}{15}+\dfrac{10}{15}=\dfrac{-2}{15}\)

=>\(3x=\dfrac{18}{7}+\dfrac{2}{15}=\dfrac{270}{105}+\dfrac{14}{105}=\dfrac{284}{105}\)

=>\(x=\dfrac{284}{315}\)

c: \(\dfrac{1}{6}-\dfrac{3}{8}+1,75=3\dfrac{4}{3}-x\)

=>\(\dfrac{13}{3}-x=\dfrac{4}{24}-\dfrac{9}{24}+\dfrac{42}{24}=\dfrac{37}{24}\)

=>\(x=\dfrac{13}{3}-\dfrac{37}{24}=\dfrac{108}{24}-\dfrac{37}{24}=\dfrac{71}{24}\)

d: \(\dfrac{1}{6}-\dfrac{4}{9}+0,125=2\dfrac{4}{3}-2x\)

=>\(\dfrac{10}{3}-2x=\dfrac{-11}{72}\)

=>\(2x=\dfrac{10}{3}+\dfrac{11}{72}=\dfrac{240}{72}+\dfrac{11}{72}=\dfrac{251}{72}\)

=>\(x=\dfrac{251}{144}\)

e: \(2\dfrac{2}{3}-4x=\dfrac{-7}{5}+\dfrac{2}{3}\)

=>\(2+\dfrac{2}{3}-4x=\dfrac{-7}{5}+\dfrac{2}{3}\)

=>\(2-4x=-\dfrac{7}{5}\)

=>\(4x=2+\dfrac{7}{5}=\dfrac{17}{5}\)

=>\(x=\dfrac{17}{20}\)

f: \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)

=>\(x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}=\dfrac{3}{6}-\dfrac{5}{6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

=>\(x=-\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{2}{3}\)

g: \(\left(\dfrac{3}{5}-\dfrac{4}{3}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{9}{7}\)

=>\(\dfrac{-11}{15}+\dfrac{5}{8}-x=\dfrac{9}{7}\)

=>\(\dfrac{-13}{120}-x=\dfrac{9}{7}\)

=>\(x=-\dfrac{13}{120}-\dfrac{9}{7}=\dfrac{-1171}{840}\)

21 tháng 6 2024

a, \(-1,2+\dfrac{2}{3}+x=5\Leftrightarrow x=5+1,2-\dfrac{2}{3}=\dfrac{83}{15}\)

b, \(2\dfrac{4}{7}-3x=-\dfrac{4}{5}+\dfrac{2}{3}\Leftrightarrow\dfrac{18}{7}-3x=-\dfrac{2}{15}\Leftrightarrow3x=\dfrac{284}{105}\Leftrightarrow x=\dfrac{284}{315}\)

c, \(\dfrac{1}{6}-\dfrac{3}{8}+1,75=3\dfrac{4}{3}-x\Leftrightarrow-x+\dfrac{13}{3}=\dfrac{37}{24}\Leftrightarrow x=\dfrac{13}{3}-\dfrac{37}{24}=\dfrac{67}{24}\)

d, \(\dfrac{1}{6}-\dfrac{4}{9}+0,125=2\dfrac{4}{3}-2x\Leftrightarrow-2x+\dfrac{10}{3}=-\dfrac{-11}{72}\Leftrightarrow2x=\dfrac{251}{72}\Leftrightarrow x=\dfrac{251}{144}\)

e, \(2\dfrac{2}{3}-4x=-\dfrac{7}{5}+\dfrac{2}{7}\Leftrightarrow\dfrac{8}{3}-4x=-\dfrac{39}{35}\Leftrightarrow4x=\dfrac{397}{105}\Leftrightarrow x=\dfrac{397}{420}\)

f, \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

g, \(\left(\dfrac{3}{5}-\dfrac{4}{3}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{9}{7}\Leftrightarrow\dfrac{-11}{15}+\dfrac{5}{8}-x=\dfrac{9}{7}\Leftrightarrow\left(-\dfrac{13}{120}\right)-x=\dfrac{9}{7}\Leftrightarrow x=-\dfrac{1171}{840}\)