Tìm x biết
\(\sqrt{x+3}+\sqrt{2x+4}=12-\sqrt{3x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
vậy bình phương
\(A^2=4-\sqrt{7}+2.\sqrt{4-\sqrt{7}.4+\sqrt{7}}+4+\sqrt{7}\)
\(A^2=8+2\sqrt{16}=8+8=16\)
Do vậy dễ thấy \(A=\sqrt{16}=4\)
a, \(A=\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+x+2+x^2-2x-x+2-x^2-4}{\left(x-2\right)\left(x+2\right)}=\frac{x^2}{\left(x-2\right)\left(x+2\right)}\)
b, Thay x = 4 ta có :
\(\frac{4^2}{\left(4-2\right)\left(4+2\right)}=\frac{16}{2.8}=\frac{16}{16}=1\)
Vậy \(A=1\)
\(\sqrt{2-x}=3-\sqrt{3x+1}\)
bình phương 2 vế ta được :
\(2-x=9-6\sqrt{3x+1}+3x+1\)
\(2-x-9-3x-1=-6\sqrt{3x+1}\)
\(-8-4x=-6\sqrt{3x+1}\)
\(8+4x=6\sqrt{3x+1}\)bình phương 2 vế ta được :
\(64+64x+16x^2=108x+36\)
\(28-44x+16x^2=0\)
PT <=> \(4\left(x-1\right)\left(4x-7\right)=0\)
\(x=1;\frac{7}{4}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}:\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(P=\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}:\left(\frac{-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(P=\frac{2}{\sqrt{x}-1}.\frac{x-3\sqrt{x}+2}{-5}\)
\(P=\frac{2x-6\sqrt{x}+4}{-5\sqrt{x}+5}\)
P/S: bạn tự làm nốt nha, mik chỉ rút gọn thôi : ) và bạn kt luôn júp mik nhé : )
Đặt \(A=\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(A^2=\left(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\right)^2\)
\(A^2=\left(\sqrt{24+16\sqrt{2}}\right)^2-2\sqrt{24+16\sqrt{2}}\cdot\sqrt{24-16\sqrt{2}}+\left(\sqrt{24-16\sqrt{2}}\right)^2\)
\(A^2=\left|24+16\sqrt{2}\right|-2\sqrt{\left(24+16\sqrt{2}\right)\left(24-16\sqrt{2}\right)}+\left|24-16\sqrt{2}\right|\)
\(A^2=24+16\sqrt{2}-2\sqrt{24^2-\left(16\sqrt{2}\right)^2}+24-16\sqrt{2}\)
\(A^2=48-2\sqrt{576-512}\)
\(A^2=48-2\sqrt{64}\)
\(A^2=48-2\sqrt{8^2}=48-2\cdot\left|8\right|=32\)
=> \(A=\sqrt{32}\)
\(=\sqrt{24+12\sqrt{6}+9}\)
\(=\sqrt{(2\sqrt{6})^2+2.2\sqrt{6}.3+3^2}\)
\(=\sqrt{(2\sqrt{6}+3)^2}\)
\(=|2\sqrt{6}+3|\)
\(=2\sqrt{6}+3\)