cho tam giac ABC vuong tai A duong phan giac BD (D thuoc AC). ve DH goc DC tai H
C/M: a) tam giac ABH can
b) BD la duong trung truc cua AH
c) keo dai 2 tia BA va HD cat nhau tai E. C/m BD goc CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)\)
Đặt \(B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
=>\(B=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 2-\dfrac{1}{50}\)
=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{50}\right)=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2}.\dfrac{1}{50}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]\)
Ta có:
\(\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2.2}< \dfrac{1}{2.1}=\dfrac{2-1}{2.1}=\dfrac{2}{2.1}-\dfrac{1}{2.1}=1-\dfrac{1}{2}\)
\(\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{3.2}=\dfrac{3-2}{3.2}=\dfrac{3}{3.2}-\dfrac{2}{3.2}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\left(\dfrac{1}{50}\right)^2=\dfrac{1}{50.50}< \dfrac{1}{50.49}=\dfrac{50-49}{50.49}=\dfrac{50}{50.49}-\dfrac{49}{50.49}=\dfrac{1}{49}-\dfrac{1}{50}\)
Khi đó
\(1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)
\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]< \dfrac{1}{4}.2=\dfrac{1}{2}\)
Vậy \(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2< \dfrac{1}{2}\left(đpcm\right)\)
Tick cho mk nha :>>
a.
\(\Delta'=\left(-3\right)^2-2.3=3>0\) nên pt đã cho có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=\dfrac{3}{2}\end{matrix}\right.\)
b.
\(A=\dfrac{2x_1-x_2}{x_1}-\dfrac{x_1-2x_2}{x_2}=\dfrac{2x_1}{x_1}-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+\dfrac{2x_2}{x_2}\)
\(=4-\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)=4-\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)=4-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
\(=4-\dfrac{3^2-2.\dfrac{3}{2}}{\dfrac{3}{2}}=4-4=0\)
Số bé nhất có tổng các chữ số bằng 27 và các chữ số khác nhau là 996.
Diện tích trần nhà là:
\(6\times3,6=21,6\left(m^2\right)\)
Diện tích bốn bức tường tính cả cửa là:
\(\left(6+3,6\right)\times2\times3,8=72,96\left(m^2\right)\)
Diện tích cần quét vôi là:
\(21,6+72,96-8=86,56\left(m^2\right)\)
2: Số học sinh cả lớp là 17+18=35(bạn)
Tỉ số phần trăm giữa số học sinh nữ so với tổng số học sinh là
\(\dfrac{17}{35}\simeq48.57\%\)
3:
Chu vi hình tròn là:
\(2,3\times2\times3,14=14,444\left(m\right)\)
Diện tích hình tròn là:
\(2,3\times2,3\times3,14=16,6106\left(m^2\right)\)
4: Chiều cao là \(37,5\times\dfrac{2}{3}=25\left(cm\right)\)
Diện tích tam giác là:
\(37,5\times\dfrac{25}{2}=468,75\left(cm^2\right)\)
Sửa đề:
Vẽ DH vuông góc với BC tại H
a) Do BD là tia phân giác của ABC (gt)
⇒ ∠ABD = ∠CBD
⇒ ∠ABD = ∠HBD
Xét hai tam giác vuông: ∆ABD và ∆HBD có:
BD là cạnh chung
∠ABD = ∠HBD (cmt)
⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)
⇒ AB = HB (hai cạnh tương ứng)
⇒ ∆ABH cân tại B
b) Do ∆ABD = ∆HBD (cmt)
⇒ AD = HD (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AH (1)
Do AB = HB (cmt)
⇒ B nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AH
c) Do ∆ABC vuông tại A (gt)
⇒ CA ⊥ AB
⇒ CA ⊥ BE
⇒ CA là đường cao của ∆BCE
Do EH ⊥ BC (gt)
⇒ EH là đường cao thứ hai của ∆BCE
∆BCE có:
EH là đường cao (cmt)
CA là đường cao (cmt)
Mà EH và CA cắt nhau tại D
⇒ BD là đường cao thứ ba của ∆BCE
⇒ BD ⊥ CE
cậu ơi , vẽ DH vuông góc với DC tại H à?