K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2024

Hai đường thẳng đã cho song song khi:

\(\left\{{}\begin{matrix}2-3m=2\\5\ne5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu

NV
25 tháng 4 2024

\(y:0,25+y+y:0,5+y\times3=18\)

\(4\times y+y+2\times y+y\times3=18\)

\(10\times y=18\)

\(y=18:10\)

\(y=1,8\)

25 tháng 4 2024

y : 0,25 + y + y : 0,5 + y x 3 = 18

y x 4 + y x 1 + y x 2 + y x 3 = 18

y x (4 + 1 + 2 + 3) =  18

y x [(4 + 1) + (2 +3)] = 18

y x [5 + 5] = 18

y x 10  = 18

y =  18 : 10

y = 1,8

 

25 tháng 4 2024

9,012 = 9\(\dfrac{3}{250}\) = 9\(\dfrac{6}{500}\)

   9\(\dfrac{2}{15}\) =  9\(\dfrac{6}{45}\) 

Vì   \(\dfrac{6}{500}\) < \(\dfrac{6}{45}\) 

Nên 9\(\dfrac{6}{500}\) < 9\(\dfrac{6}{45}\)

Vậy 9,012 < 9\(\dfrac{2}{15}\)

 

NV
25 tháng 4 2024

Tổng vận tốc hai xe là:

\(50+42=92\) (km/h)

Hai xe gặp nhau sau khoảng thời gian là:

\(184:92=2\) (giờ)

Hai xe gặp nhau vào lúc:

8 giờ 30 phút + 2 giờ =10 giờ 30 phút

25 tháng 4 2024

Kết quả là 10 giờ 30 phút nha bạn 

Chc b học tốt.. 

25 tháng 4 2024

2/5ha

25 tháng 4 2024

\(-\dfrac{3}{7}-\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{5}{4}\\ =\dfrac{3}{7}.\left(-1-\dfrac{1}{4}+\dfrac{5}{4}\right)\\ =\dfrac{3}{7}.0\\ =0\)

25 tháng 4 2024

\(\dfrac{-3}{7}-\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{5}{4}\)

=\(\dfrac{-3}{7}-\dfrac{3}{28}+\dfrac{15}{28}\)

=\(\dfrac{-15}{28}+\dfrac{15}{28}\)

=\(0\)

\(#LilyVo\)

a: Xét tứ giác AOBM có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

nên AOBM là tứ giác nội tiếp

b: Xét ΔAOM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

DO đó: MA=MB và MO là phân giác của góc AMB

MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

AOBM nội tiếp

=>\(\widehat{AOB}+\widehat{AMB}=180^0\)

=>\(\widehat{AOB}=120^0\)

Độ dài đường tròn (O) là:

\(C=2\cdot5\cdot3,14=31,4\left(cm\right)\)

Diện tích hình quạt tròn ứng với cung nhỏ AB là:

\(S_{q\left(AB\right)}=\Omega\cdot5^2\cdot\dfrac{120}{360}=5^2\cdot\dfrac{3.14}{3}=\dfrac{157}{6}\left(cm^2\right)\)

c: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: OM là phân giác của góc AOB

=>\(\widehat{AOM}=\widehat{BOM}=\dfrac{120^0}{2}=60^0\)

Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)

nên ΔOAC đều

=>AC=OC=OA=R

Xét ΔOCB có OC=OB và \(\widehat{COB}=60^0\)

nên ΔOCB đều

=>OC=CB=OB=R

Xét tứ giác OACB có

OA=AC=CB=OB

nên OACB là hình thoi

25 tháng 4 2024

           Giải:

Câu a tự làm

b; Phương trình hoành độ giao điểm của (p) và (d) là:

             \(x^2\) = - 2\(x\) + 3

              \(x^2\) + 2\(x\) - 3 = 0

              a + b + c = 1 + 2  - 3 = 0

      Vậy phương trình có hai nghiệm phân biệt lần lượt là:

              \(x_1\) = 1; \(x_2\) = - 3

\(x_1\) = 1 ⇒ y1 = 12 = 1;  \(x_2\) = - 3 ⇒ y2 =  (\(x_2\))2 = (- 3)2 = 9

Vậy (p) cắt (d) tại hai điểm A; B lần lượt có tọa độ là:

A(1; 1); B(-3; 9)

 

 

 

NV
25 tháng 4 2024

a.

Do MA, MB là các tiếp tuyến \(\Rightarrow\widehat{MAO}=\widehat{MBO}=90^0\)

\(\Rightarrow A,B\) cùng nhìn OM dưới 1 góc vuông nên AOBM nội tiếp

b.

\(C_{\left(O\right)}=2\pi R=10\pi=31,42\left(cm\right)\)

Trong tam giác vuông OAM:

\(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)

\(\Rightarrow\widehat{AOB}=2\widehat{AOM}=120^0\)

\(\Rightarrow S_{OAB}=S_{\left(O\right)}.\dfrac{120}{360}=\dfrac{\pi.R^2}{3}=\dfrac{5^2.\pi}{3}\approx26,18\)

c.

Ta có \(CM=OM-OC=2R-R=R\)

\(\Rightarrow CM=OC\Rightarrow C\) là trung điểm OM

\(\Rightarrow AC\) là trung tuyến ứng với cạnh huyền trong tam giác vuông OAM

\(\Rightarrow AC=\dfrac{1}{2}OM=R=OA\)

Tương tự có BC là trung tuyến ứng với cạnh huyền trong tam giác vuông OBM

\(\Rightarrow BC=OC=R\)

\(\Rightarrow OA=AC=BC=OB\Rightarrow AOBC\) là hình thoi

Gọi D là giao điểm AB và OC \(\Rightarrow AD\perp OC\) (hai đường chéo hình thoi)

Trong tam giác vuông AOD:

\(sin\widehat{AOD}=\dfrac{AD}{OA}\Rightarrow AD=OA.sin\widehat{AOD}=5.sin60^0=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

\(\Rightarrow AB=2AD=5\sqrt{3}\) (cm)

\(\Rightarrow S_{AOBC}=\dfrac{1}{2}AD.OC=\dfrac{25\sqrt{3}}{2}\approx21,65\left(cm^2\right)\)

NV
25 tháng 4 2024

loading...