Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta cũng có các tỉ lệ thức sau:
a) \(\frac{5a-7b}{3a+4b}=\frac{5c-7d}{3c+4d}\)
b)\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y,z là số cây trồng của 3 lớp 7A,7B,7C theo đề bài ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8};2x+4y-z=108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{2x+4y-z}{6+20-8}-\frac{108}{18}=6\)
=>\(\frac{x}{3}=6\Rightarrow x=18\)
=>\(\frac{y}{5}=6\Rightarrow y=30\)
=>\(\frac{z}{8}=6\Rightarrow z=48\)
Vậy...........
a) Xét tam giác ABM và tam giác ACM có
AB=AC (gt)
MB=MC(M tđ BC)
AM chung
tam giác ABM = tam giác ACM (c.c.c) (đpcm)
b) Vì AB=AC => tam giác ABC là tam giác cân tại A
Mà: tam giác ABM = tam giác ACM (c.c.c) (cmt)
=> ^AMB=^AMC (2 góc tương ứng)
=> ^AMB+^AMC=180o
=> ^AMB=^AMC = 90o
=> AM_|_CM (đpcm)
c) Vì AH=HK (gt)
=> AHK là tam giác cân tại A
Mà: AM_|_BC (AM_|_BC) (AM_|_CM) (cmt)
Lại có: I giao điểm của AM và HK => I thuộc AM
=> AI_|_HK
=> HK//BC (đpcm)
d) Vì tam giác AHK cân tại A
Mà ^HAK=60o
=> tam giác AHK là tam giác đều
=> ^AHK=^HAK=60o
Vậy ^AHK=60o
ABCMHK----60I
(: olm lag quá nên gửi bài chậm
giúp mình với, mai mình kiểm tra cuối kỉ rồi