K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

gọi AB giao ( T ) tại K

có AD là tia phân giác của BAC => sđ cung KD = sđ MD 

mà PBE = 1/2 ( sđ MD - sđ PD) =1/2 ( sđ KD-sđ PD ) =1/2 sđ KP = BAE 

khi CM đc tam giác ABE ~ tam giác BPE ( g - g)

=> BE2 = EP.EA

 

 

22 tháng 2 2021

gọi AB giao (T) tại K 

Có AD là tia phân giác của BAC =>sđ cung KD= sđ MD 

Mà PBE =1/2(sđMD-sđPD)=1/2(sđKD-sđPD)=1/2sđKP=BA

Ta CM được : tam giác ABE~tam giác BPE(g.g)

=>BE^2=EP.EA 

22 tháng 2 2021

a) ta có : 

P là điểm chính giữa cung AC

=> cung AP = cung PC

N là điểm chính giữa cung BC

=> cung NB = NC

Mà : góc IBN = 1/2 cung PN = 1/2 (cung PC + cung CN )

        góc BIN = 1/2 ( cung BN + AP ) 

mà cung PC = cung AP 

      cung BN = cung CN

=> IBN = BIN

=> tam giác IBN là tam giác cân 

b) ta có : N là điểm chính giữa của cung BC 

=>MN là tia phân giác của góc BAC

=> EB/AE=BN/AN

=> đpcm

c) ta có : BNI cân 

NM là tia phân giác 

=> NM cũng là tia trung trực 

=> EBN = EIN 

MÀ IBN = BIN ( tam giác cân ) 

=> EBI=EIB (1) 

=> tam giác EBI cân 

mà P là điểm chính giữa cung AC

=> BP là đường phân giác của góc EBN

=> EBP = IBN hay EBI=IBN (2) 

từ (1) và (2) => IBN=EIB

mà 2 góc ở vị trí slt => EI//BC

d) Xét tam giác BAN và tam giác BDN

có N chung 

   góc BAN = BDN ( cùng chắn cung BN )

=> tam giác BAN đồng dạng tam giác BDN 

=> đpcm

 

22 tháng 2 2021

a, CM BIN=IBN = 1/2 sđ PN => tam giác BIN cân tại N 

b, CM đc MN vuông góc với BP mà tam giác BIN cân tại N => MN là đường trung trực của BI , E thuộc MN => BE=BI và EN là tia pg của BEI  

CM tam giác AEN ~ tam giác IEN ( g-g) =>AE.IN = EI.AN => AE.BN = EB.AN

c, CM đc EBP = PBC mà EBI =EIB nên EIB = IBD mà 2 góc này ở vị trí slt=> EI //BC

d, CM tam giác ABN~ tam giác BDN ( g-g) => AN/BN = AB /BD \dfrac{AN}{BN}=\dfrac{AB}{BD}

21 tháng 1 2021

+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD

Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)

nên ^ACD = ^AEC (1)

+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)

Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)

\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)

22 tháng 2 2021

vì AB =AC => sđ cung AB = sđ cung AC 

=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC ) 

=> AEB = 1/2 sđ AD =ABD 

CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE 

...............................................................................................................

..................................................................................................................

.............................................................................................................

các bạn tham khảo nha

22 tháng 2 2021

Ta có : góc BAM = góc CAM ( AM là tia phân giác của góc BAC )

Suy ra cung BM = cung CM (1)

Lại có : góc DAM = 1/2 sđ góc ACM ( góc giữa tia tiếp tuyến và dây cung

Hay góc DAM = sđ cung AC + sđ cung CM/2 (2)

Gọi K là giao điểm của BC và AM

Vì góc AKC là góc có đỉnh ở bên trong đường tròn (O) nên :

góc AKC = sđ cung AC + sđ cung BM/2 (3)

Từ (1),(2) và (3) suy ra góc DAM = góc AKC hay góc DAK = góc AKB

 

22 tháng 2 2021

có sđ MN + sđ PQ = 1/2 sđ AB + 1/2 sđ BC + 1/2 sđ CD + 1/2 sđ AD = 180 độ 

mà MIN = 1/2 ( sđ MN + sđ PQ ) 

nên MIN = 90 độ => MI vuông góc NI hay MP vuông góc với NQ 

22 tháng 2 2021

Có sđ MN +sđPQ=1/2sđAB+1/2sđBC +1/2sđCD+1/2sđAD=180độ 

mà MIN =1/2(sđMN+sđPQ)

Nên MIN=90độ =>MI vuông góc MI 

Hay MQ vuông góc NP 

21 tháng 2 2021

ta có: AHD = 1/2( sđAD + sđBE)

BKE = 1/2( sđDC + sđBE ) 

Mà : sđAD = sđDC ( BD là tia phân giác )

=> AHD = BKE 

22 tháng 2 2021

Ta có ADH = 1/2 (sđAD + sđBE)

BKE = 1/2 (sđDC + sđBE)

Mà DC=AD

⇒ ADH=BKE