Cho x,y,z dương. Chứng minh rằng:
$\sum \frac{1}{x}+\frac{9}{x+y+z}\geq 4\sum \frac{1}{x+y}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa +1 thành -1
Ta có : -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x
vậy ta có đpcm
Ta có :
-x2 + x + 1 = -( x - 1/2 )2 - 5/4 < 0 , với mọi giá trị của x
A B C D ? ?
Ta có: \(AB//CD\left(gt\right)\)
\(\Rightarrow\hept{\begin{cases}A+D=180^0\left(tcp\right)\\C+B=180^0\left(tcp\right)\end{cases}}\)mà \(\hept{\begin{cases}D=40^0\\B=80^0\end{cases}\left(gt\right)}\)
\(\Rightarrow\hept{\begin{cases}A=140^0\\C=100^0\end{cases}}\)
chúc bạn học tốt
a, \(x^2-xz+x-z=x\left(x-z\right)+x-z=\left(x+1\right)\left(x-z\right)\)
b, \(xz+yz-7\left(x+y\right)=z\left(x+y\right)-7\left(x+y\right)=\left(z-7\right)\left(x+y\right)\)
c, \(7x^2-7xy-4x+4y=7x\left(x-y\right)-4\left(x-y\right)=\left(7x-4\right)\left(x-y\right)\)
d, \(x^2+6x-y^2+9=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
Gọi H là chân đường cao kẻ từ A -> BC
Áp dụng t/c đg p/g vào tg ABC ta có:\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{15}{20}=\frac{3}{4}\)
Mà \(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{CD}=\frac{3}{4}\) (theo trên)
Vậy tỉ số diện tích tg ABD và tg ACD là 3/4
Gọi H là chân đường cao kẻ từ A đến BC
Theo tính chất đường phân giác trong taam giác ABC, ta có:
\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{15}{20}=\frac{3}{4}\)
Ta có: \(\frac{S_{\Delta ABD}}{S_{\Delta ADC}}=\frac{\frac{1}{2}AH.DB}{\frac{1}{2}AH.DC}=\frac{DB}{DC}=\frac{3}{4}\)
A C D B 15cm 20cm 25cm
a) x2 - 2xy + 5x - 10y
= x(x - 2y) + 5(x - 2y)
= (x + 5)(x - 2y)
b) x(2x - 3y) - 6y2 + 4xy
= x(2x - 3y) + 2y(2x - 3y)
= (x + 2y)(2x - 3y)
c) 8x3 + 4x2 - y2 - y3
= (4x2 - y2) + (8x3 - y3)
= (2x - y)(2x + y) - (2x - y)(4x2 + 2xy + y2)
= (2x - y)(-4x2 - 2xy - y2 + 2x + y)
d) a3 - a2b - ab2 + b3
= a2(a- b) - b2(a - b)
= (a2 - b2)(a - b) = (a - b)2(a + b)
e) ab2c3 + 64ab2
= ab2(c3 + 64)
= ab2(c + 4)(c2 + 4c + 16)
f) 27x3y - a3b3y
= y[27 - (ab)3]
= y(3 - ab)(a2b2 + 3ab + 9)
Bài 1.
\(A=x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
Bài 2.
\(x^2\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)
Bài 1 :
A = x3 - 4x2 + 4x
A = x.( x2 - 4x + 4 )
A = x.( x - 2)2
Bài 2 : chịu :))) tính mãi ko ra @@