K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

Đặt: \(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\), khi đó ta được:

\(A^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(+2\cdot\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}+2\cdot\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}+2\cdot\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}\ge\sqrt{\left(ab+\frac{1}{ab}\right)^2}=ab+\frac{1}{ab}\)

\(\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}\ge\sqrt{\left(bc-\frac{1}{bc}\right)^2}=bc+\frac{1}{bc}\)

\(\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\ge\sqrt{\left(ca+\frac{1}{ca}\right)^2}=ca+\frac{1}{ca}\)

Do đó ta có:

\(A^2\ge a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2=82\)

Hay \(A\ge\sqrt{82}\), vậy bất đẳng thức được chứng minh.

17 tháng 2 2022

là 47790 đồng bạn nhé!!

nhơ tick cho mk nha! 

17 tháng 2 2022

nhưng mà tính hình gì mới đc ???

17 tháng 2 2022

chu vi mảnh đất hình vuông là:

12 x 4 = 48(cm)

Chu vi 2 mảnh đất hình bán nguyệt là:

12 x 3,14 = 37,68(cm)

Chu vi cả khu vườn là:

48 + 37,68 = 85,68(cm)

                 Đ/S: 85,68cm 

0

1
17 tháng 2 2022

daxdippwdXDQEAXPQESQOEXQWCOIPXPIWQP0M1XFO99A[ƯM0seq9xrd

17 tháng 2 2022

giúp mik với

18 tháng 2 2022

a) Có \(\hept{\begin{cases}\widehat{MOB}+\widehat{NOC}=120^{\text{o}}\\\widehat{MOB}+\widehat{BMO}=120^{\text{o}}\end{cases}}\Rightarrow\widehat{NOC}=\widehat{BMO}\)

Xét tam giác BMO và tam giác CNO có 

\(\hept{\begin{cases}\widehat{BMO}=\widehat{NOC}\\\widehat{MBO}=\widehat{NCO}\end{cases}}\Rightarrow\Delta MBO\approx\Delta OCN\)

\(\Rightarrow\frac{BO}{NC}=\frac{MB}{OC}\Leftrightarrow BO.OC=NC.MB\Leftrightarrow\frac{1}{4}BC^2=NC.BM\)(đpcm)

b)