Phân tích đa thức thành nhân tử
( a + b+ c)^3 - a^3 + b^3 + c^3 = 3(a + b) (b + c) (c + a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x^3-y^3-6xy\left(2x-y\right)=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2-6xy\right)=\left(2x-y\right)\left(4x^2-4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
b) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=\left[\left(3x+2\right)-\left(x-1\right)\right]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2\)
a) 8x3 - y3 - 6xy(2x - y)
= (2x)3 - y3 - 3.2x.y.(2x - y)
= (2x - y)3
b) (3x + 2)2 - 2(x - 1)(3x + 2) + (x - 1)2
= (3x + 2 - x + 1)2
= (2x + 3)2
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.\frac{3}{4}.2x+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
=> Min A = 9/8
Dấu "=" xảy ra <=> \(2x+\frac{3}{4}=0\)
<=> x = -3/8
Vậy Min A = 9/8 <=> x = -3/8
Trả lời:
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.2x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(2x+\frac{3}{4}\right)^2-\frac{9}{16}\right]=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\forall x\)
Dấu "=" xảy ra khi \(2x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{8}\)
Vậy GTLN của A = 9/8 khi x = - 3/8
b, \(B=5x-4x^2=-\left(4x^2-5x\right)=-\left(4x^2-2.2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
\(=-\left[\left(2x-\frac{5}{4}\right)^2-\frac{25}{16}\right]=-\left(2x-\frac{5}{4}\right)^2+\frac{25}{16}\le\frac{25}{16}\forall x\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{8}\)
Vậy GTLN của B = 25/16 khi x = 5/8
Ta có: VT=(a+b+c)3−a3−b3−c3VT=(a+b+c)3−a3−b3−c3
=[(a+b+c)3−a3]−(b3+c3)=[(a+b+c)3−a3]−(b3+c3)
=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=3(b+c)[a(a+b)+c(a+b)]=3(b+c)[a(a+b)+c(a+b)]
=3(a+b)(b+c)(c+a)=VP=3(a+b)(b+c)(c+a)=VP (Đpcm)
Thật ra mình làm theo đề thấy nó đáng ra phải là chứng minh chứ ko phải phân tích . chúc học tốt!