Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x5 + x4 - 2x3 - 3x2 - x + 1
= x5 + x4 - 3x3 - 3x2 + (x3 - x) + 1
= x4(x + 1) - 3x2(x + 1) + 2 + 1
= (x + 1)(x4 - 3x2) + 3
= x(x + 1)(x3 - 3x) + 3
= x(x + 1)(x3 - x - 2x) + 3
= x(x + 1)(2 - 2x) + 3
= -2x(x + 1)(x - 1) + 3
= -2(x3 - x) + 3 = -2.2 + 3 = -1
Khi đó P(x) = (x5 + x4 - 2x3 - 3x2 - x + 1)2018 = (-1)2018 = 1
12,ĐK : x >= 0
\(\left(\sqrt{2x}-y\right)^2=2x-2\sqrt{2x}y+y^2\)
13, \(\left(\frac{3}{2}x+3y\right)^2=\frac{9}{4}x+\frac{2.3x}{2}.3y+9y^2=\frac{9}{4}x+9xy+9y^2\)
14, ĐK : x ; y >= 0
\(\left(\sqrt{2x}+\sqrt{8y}\right)^2=2x+2\sqrt{16xy}+8y=2x+8\sqrt{xy}+8y\)
15, \(\left(x+\frac{1}{6}y+3\right)^2=x^2+\frac{1}{36}y^2+9-\frac{1}{3}xy-y-6x\)
sửa 13 = \(\frac{9}{4}x^2+9xy+9y^2\)
16, \(\left(\frac{1}{2}x-4y\right)^2=\frac{1}{4}x^2-4xy+16y^2\)
17, \(\left(\frac{x}{2}+2y^2\right)\left(\frac{x}{2}-2y^2\right)=\frac{x^2}{4}-4y^4\)
18, \(\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
19, \(\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(=4x^2-2\left(x^2-y^2\right)=2x^2+2y^2\)
20, \(\left(2x+3\right)^2-\left(x+1\right)^2=\left(2x+3-x-1\right)\left(2x+3+x+1\right)=\left(x+2\right)\left(3x+4\right)\)
Ta có: (x+y)3 = 13
=> x3 + 3x2y + 3xy2 + y3 = 1
=> x3+ y3 + 3xy ( x+y) =1
=> x3 + y3 + 3.(-6).1 =1
=> x3 + y3 =19
Từ x+y=1
=> (x+y)5 = 15
=> x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 = 1
=> x5 + y5 + 5xy(x3 + y3) + 10x2y2( x + y) = 1
=> x5 + y5 + 5.(-6) . 19 + 10 . (-6)2 . 1 =1
=> x5 + y5 - 210 = 1
=> x5 + y5= 1 +210 = 211
Vậy x5 + y5 = 211
\(B=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)
\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)
\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)
\(=\left(2x-5-2\right)^2-4\)
\(=\left(2x-7\right)^2-4\ge-4\)
Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)
2x2-x+1/3-2/3x=0
6x2-5x+1=0
6x2-3x-2x+1=0
(x-1)(2x-1)=0
x-1=0 và 2x=1
x=1 và x=1/2
\(x\left(2x-1\right)+\frac{1}{3}-\left(\frac{2}{3}\right)x=0\)
\(\Leftrightarrow2x^2-x+\frac{1}{3}-\frac{2x}{3}=0\)
\(\Leftrightarrow2x^2-\frac{5}{3}x+\frac{1}{3}=0\)
\(\Leftrightarrow\frac{6x^2-5x+1}{3}=0\)
\(\Leftrightarrow6x^2-5x+1=0\)
\(\Leftrightarrow6x^2-2x-3x+1=0\)
\(\Leftrightarrow2x\left(3x-1\right)-\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=1\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy \(S=\left\{\frac{1}{3};\frac{1}{2}\right\}\)
( x + 1 ) ^2 - ( x -1) ^2 - 3 ( x - 1 ) ( x + 1 )
= x^2 + 2x + 1 - ( x^2 - 2x + 1 ) - 3 ( x^2 -1 )
= x^2 + 2x + 1 - x^2 + 2x -1 - 3x^2 + 3
= -3x^2 + 4x + 3
( x + y ) ^3 - ( x - y ) ^3 - 6x^2y
= x^3 + 3x^2y + 3xy^2 + y^3 - ( x^3 - 3x^2y + 3xy^2 - y^3 ) - 6x^2y
= x^3 + 3x^2y + 3xy^2 + y^3 - x^3 + 3x^2y - 3xy^2 + y^3 - 6x^2y
= 2y^3