Phân tích đa thức sau thành nhân tử: xy - y^2 - x + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x^2 - 20
= 5 ( x^2 - 4 )
= 5 ( x^2 - 2^2 )
= 5 ( x - 2 ) ( x + 2 )
Trả lời:
34, x6 + 1 = (x2)3 + 13 = ( x2 + 1 )( x4 + x2 + 1 )
35, x6 - y6 = (x3)2 - (y3)2 = ( x3 - y3 )( x3 + y3 ) = ( x - y )( x2 + xy + y2 )( x + y )( x2 - xy + y2 )
36, x12 - y4 = (x6)2 - (y2)2 = ( x6 - y2 )( x6 + y2 ) = [ (x3)2 - y2 ]( x6 + y2 ) = ( x3 - y )( x3 + y )( x6 + y2 )
37, 1/27 + a3 = (1/3)3 + a3 = ( 1/3 + a )( 1/9 + 1/3a + a2 )
38, 1/8x3 - 8 = (1/2a)3 - 23 = ( 1/2a - 2 )( 1/4a2 + a + 4 )
39, 27 - 27m + 9m2 - m3 = 33 - 3.32.m + 3.3.m2 - m3 = ( 3 - m )3
40, \(125-\left(x+2\right)^2=\left(5\sqrt{5}\right)^2-\left(x+2\right)^2=\left(5\sqrt{5}-x-2\right)\left(5\sqrt{5}+x+2\right)\)
a) \(x^2-2x-5=0\)
\(\Leftrightarrow x^2-2x+1=6\)
\(\Leftrightarrow\left(x-1\right)^2=6\)
\(\Leftrightarrow x=1\pm\sqrt{6}\)
b) \(x^2-3x-1=0\)
\(\Leftrightarrow x^2-3x+\frac{9}{4}=\frac{13}{4}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{13}{4}\)
\(\Leftrightarrow x=\frac{3\pm\sqrt{13}}{2}\)
c) \(x^4-4x^2+3=0\)
\(\Leftrightarrow x^4-4x^2+4=1\)
\(\Leftrightarrow\left(x^2-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=1\\x^2-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=\pm1\end{cases}}\)
d) \(x^2+xy+y^2=0\)
\(\Leftrightarrow x^2+xy+\frac{1}{4}y^2+\frac{3}{4}y^2=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}y=0\\y=0\end{cases}}\)
\(\Leftrightarrow x=y=0\).
Trả lời:
23, 9 ( ab )2 - 4 ( a - 2b )2
= ( 3ab )2 - [ 2 ( a - 2b ) ]2
= ( 3ab )2 - ( 2a - 4b )2
= ( 3ab - 2a + 4b )( 3ab + 2a - 4b )
24, 25x2 - 20xy + 4y2
= ( 5x )2 - 2.5x.2y + ( 2y )2
= ( 5x - 2y )2
25, 4x2 - 12xy + 9y2
= ( 2x )2 - 2.2x.3y + ( 3y )2
= ( 2x - 3y )2
26, 9x4 - 12x2y + 4y2
= ( 3x2 )2 - 2.3x2.2y + ( 2y )2
= ( 3x2 - 2y )2
27, 4x4 - 16x2y3 + 16y6
= 4 ( x4 - 4x2y3 + 4y6 )
= 4 [ ( x2 )2 - 2.x2.2y3 + ( 2y )3 ]
= 4 ( x2 - 2y3 )2
\(xy-y^2-x+y=y\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(y-1\right)\)
xy - y^2 - x + y
= y ( x - y ) - ( x - y )
= ( x - y ) ( y - 1 )