phân tích thành nhân tử phối hợp các phương pháp
a)16+2x^3y^3
b)100a^2-(a^2+25)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp e giải 3 phần cuối bài 1 và bài 3 nhé e đang cần gấp mong mn giúp
Bài 1 :
d, \(3x^2+6xy-48z^2+3y^2=3\left[\left(x^2+2xy+y^2\right)-16z^2\right]\)
\(=3\left[\left(x+y\right)^2-\left(4z\right)^2\right]=3\left(x+y-4z\right)\left(x+y+4z\right)\)
e, \(x^2-z^2+4y^2-4t^2-4xy+4zt=x^2-4xy+4y^2-\left(z^2-4zt+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y-z+2t\right)\left(x-2y+z-2t\right)\)
f, \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2\right)-16x\)
\(=x\left[\left(x+y\right)^2-16\right]=x\left(x+y-4\right)\left(x+y+4\right)\)
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
a) \(x^3-\left(y-1\right)^3\)
\(=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)
\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
b) \(\left(a+b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
c) Sửa đề: \(125-75m+15m^2-m^3\)
\(=\left(5-m\right)^3\)
a) Vì BH là đường cao của ΔABC nên BH ⊥ AC
Ta có: ME ⊥ AC ; BH ⊥ AC
=> ME // BH
Vậy ME//BH
b) Ta có: ME // BH ; NP //BH
=> ME // NP
Xét ΔABH có: AM = MB (vì M là trung điểm của AB)
ME // BH(chứng minh phần a)
=> E là trung điểm của AH
=> ME là đường trung bình của ΔABH
=> ME = 1/2 BH (1)
Xét ΔCHB có: NC = NB( vì N là trung điểm của cạnh BC)
NP // BH (giả thiết)
=> P là trung điểm của HC
=> PN là đường trung bình của ΔCBH
=> PN = 1/2 BH (2)
Từ (1) và (2)
=> PN = ME = 1/2 BH
Vậy ME // NP; ME = NP
không mất tổng quát ta giả sử
\(a>b\)
ta có hai trường hợp 1: \(\hept{\begin{cases}x+a>0\\x+b>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-a\\x>-b\end{cases}\Leftrightarrow}}x>-b\)
trường hợp 2 : \(\hept{\begin{cases}x+a< 0\\x+b< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -a\\x< -b\end{cases}\Leftrightarrow}}x< -a\)
Vậy \(\orbr{\begin{cases}x>-b\\x< -a\end{cases}}\) tổng quát \(\orbr{\begin{cases}x>-min\left(a,b\right)\\x< -max\left(a,b\right)\end{cases}}\)
Ta có : (x + a)(x + b) > 0
TH1 : \(\hept{\begin{cases}x+a>0\\x+b< 0\end{cases}}\Leftrightarrow-a< x< -b\)
TH2 : \(\hept{\begin{cases}x+a< 0\\x+b>0\end{cases}}\Leftrightarrow-b< x< -a\)
Nếu a < b => TH1 loại TH2 đúng
Nếu a > b => TH2 loại TH
Nếu a = b => bất phương trình luôn đúng khi \(x\ne a\)
\(\left(x+2\right)\left(x-3\right)\ge0\)
TH1 : \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}}\Leftrightarrow x\ge3\)
TH2 : \(\hept{\begin{cases}x+2\le0\\x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\le3\end{cases}}\Leftrightarrow x\le-2\)
Vậy bft có tập nghiệm S = { x >= 3 ; x =< -2 }
\(\left(x+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\ge3\end{cases}}\)
\(\Leftrightarrow x\ge3\)
Hok tốt!!!!!!
a, \(x^2-6x+9=\left(x-3\right)^2\)
b, \(x^2-12x+36=\left(x-4\right)^2\)
c, \(9x^2-25=\left(3x-5\right)\left(3x+5\right)\)
d, \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e, \(x^4-8x^2+16=\left(x^2-4\right)^2=\left[\left(x-2\right)\left(x+2\right)\right]^2\)
f, \(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
g, \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=9\left(1-x\right)\left(x+1\right)\)
h, \(\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2\)
\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)
a) 16 + 2x3y3
= 2( 8 + x3y3)
= 2[ 23 + (xy)3]
= 2 (2+xy)(4 - 2xy + x2y2)
b) 100a2 - (a2 + 25)2
= (10a)2 - (a2 +25)2
= (10a - a2 - 25)(10a + a2 +25)
= -(a2 - 2a.5 + 52)(a2 + 2a.5 + 52)
=-(a-5)2 (a+5)2
a) \(16+2x^3y^3\)
\(=2\left(8+x^3y^3\right)\)
\(=2\left(xy+2\right)\left(x^2y^2-2xy+4\right)\)
b) \(100a^2-\left(a^2+25\right)^2\)
\(=\left(10a-a^2-25\right)\left(10a+a^2+25\right)\)
\(=-\left(a-5\right)^2\left(a+5\right)^2\)