cho a,b,c thỏa a2+b2+(a+b)2=c2+d2+(c+d)2.chứng minh rằng a4+b4+(a+b)4=c4+d4+(c+d)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thoi , góc A = 60 độ suy ra ABD và BCD la 2 tam giác đều. =>
AB=BD và góc A = góc BDN = 6o độ.
Lại có AM+CN=AD=> AM=DN, CN=MD.
=> tam giác ABM = tam giác DBN. => BM =BN (1) và góc ABM = góc NBD.
=> góc ABM+ góc MBD = góc NBD + góc DBM = góc NBM = 60 độ.(2)
(1), (2) => đpcm.
a) = x^2 - 2x + 1 + 4y^2 + 4y + 1
= ( x - 1 )^2 + ( 2y + 1 )^2
b) = 4x^2 + 4x +1 + 4y^2 + 4y + 1
= ( 2x + 1 )^2 + ( 2y + 1 )^2
c) = 9x^2 - 12x + 4 + 16y^2 - 24y + 9
=( 3x - 2 )^2 + ( 4y - 3 )^2
d) = 4x^2 + 4xy+ y^2 + x^2 - 2xz + z^2
= ( 2x + y )^2 + ( x - z )^2
Gọi 3 số tự nhiên liên tiếp cần tìm là a - 1; a; a + 1
Ta có a(a - 1) + a(a + 1) + (a - 1)(a + 1) = 26
a2 - a + a2 + a + a2 - 1 = 26
3a2 - 1 = 26
3a2 = 27
a2 = 9
mà a là số tự nhiên nên a = 3
⇒ a - 1 = 2; a + 1 = 4
Vậy 3 số tự nhiên liên tiếp cần tìm là 2;3;4
Gọi 3 số tự nhiên liên tiếp cần tìm là a - 1; a; a + 1
Ta có a(a - 1) + a(a + 1) + (a - 1)(a + 1) = 26
a2 - a + a2 + a + a2 - 1 = 26
3a2 - 1 = 26
3a2 = 27
a2 = 9
mà a là số tự nhiên nên a = 3
⇒ a - 1 = 2; a + 1 = 4
Vậy 3 số tự nhiên liên tiếp cần tìm là 2;3;4
giả sử các góc của 1 tứ giác đều là góc nhọn
=>tổng các góc<90.4=360 (vô lí vì tổng các góc của 1 tứ giác =360
vậy các góc của 1 tứ giác ko thể đều là nhọn
*giả sử các góc của 1 tứ giác đều là góc tù
=>tổng các góc>90.4=360 (vô lí vì tổng các góc của 1 tứ giác =360)
vậy các góc của 1 tứ giác ko thể đều là tù
=>dpcm
\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)
Ta có x=79 => 80=79+1=x+1
\(C=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15\)
\(C=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15\)
\(C=x+15=79+15=94\)
a2 + b2 + (a + b)2 = c2 + d2 + (c +d)2 => 2.(a2 + b2) + 2ab = 2.(c2 + d2) + 2cd
=> a2 + b2 + ab = c2 + d2 + cd (1)
+) a4 + b4 + (a + b)4 = (a2 + b2)2 - 2a2.b2 + (a + b)4 = [(a2 + b2)2 - a2.b2] + [(a + b)4 - a2.b2]
= (a2 + b2 - ab). (a2 + b2 + ab) + [(a + b)2 - ab].[(a+ b)2 + ab]
= (a2 + b2 - ab). (a2 + b2 + ab) + (a2 + b2 + ab). (a2 + b2 + 3ab) = (a2 + b2 + ab). [(a2 + b2 - ab) + (a2 + b2 + 3ab)]
= 2.(a2 + b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2 (2)
Tương tự: c4 + d4 + (c+d)4 = 2. (c2 + d2 + cd)2 (3)
Từ (1)(2)(3) => đpcm