Cho x,y thỏa mãn: \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\)
Tìm GTLN và GTNN của: \(S=x+y+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 = x+ y => (x2 - x + \(\frac{1}{4}\)) + (y2 - y + \(\frac{1}{4}\)) = \(\frac{1}{2}\) => (x - \(\frac{1}{2}\))2 + (y - \(\frac{1}{2}\))2 = \(\frac{1}{2}\)
F2 = (x - y)2 = [(x - \(\frac{1}{2}\)) - (y - \(\frac{1}{2}\))]2
Áp dụng BĐT Bu nhia ta có F2 = [1.(x - \(\frac{1}{2}\)) + (-1). (y - \(\frac{1}{2}\))]2 \(\le\) (12 + (-1)2). [(x - \(\frac{1}{2}\))2 + (y - \(\frac{1}{2}\))2] = 2.\(\frac{1}{2}\) = 1
=> -1 \(\le\) F \(\le\) 1
Vậy GTNN của F bằng -1 khi x = 0; y = 1
; GTLN bằng 1 khi x = 1; y = 0
Câu hỏi của OoO Kún Chảnh OoO - Toán lớp 8 - Học toán với OnlineMath
Từ x2 + 2xy + 7(x+y) + 7y2 + 10 = 0 => (x + y)2 + 7 .(x + y) + 6y2 + 10 = 0 (*)
S = x+ y + 1 => x + y = S - 1
(*) => (S - 1)2 + 7.(S - 1) + 6y2 + 10 = 0
=> S2 + 5S + 4 = -6y2 \(\le\) 0 với mọi y => S2 + 5S + 4 \(\le\) 0
=> (S + 4)(S + 1) \(\le\) 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 \(\le\) S \(\le\) -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2