Cho \(x,y,z\) là ba số dương thỏa mãn điều kiện
\(\dfrac{3}{x}+\dfrac{5}{y}+\dfrac{4}{z}\le12\).
Tìm GTLN của biểu thức \(S=\dfrac{1}{x+z}+\dfrac{2}{y+x}+\dfrac{3}{z+y}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x \(\ge\) 3 => \(\dfrac{1}{x}\) \(\ge\dfrac{1}{3}\)=> x + \(\dfrac{1}{x}\ge\dfrac{4}{3}\)=>\(\min\limits_{ }\)=\(\dfrac{4}{3}\) tại x=0
Giá trị lớn nhất là 3
3