K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

\(Q=\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(\Rightarrow Q^2=\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Bunhiacopxki, ta được:

\(\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)\(\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{2a+bc}\right)^2+\left(\sqrt{2b+ca}\right)^2+\left(\sqrt{2c+ab}\right)^2\right]\)

\(\Leftrightarrow Q^2\le3\left(2a+bc+2b+ca+2c+ab\right)\)

\(\Leftrightarrow Q^2\le3\left[2\left(a+b+c\right)+\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(\Leftrightarrow Q^2\le6.2+3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow Q^2\le12+3\left(ab+bc+ca\right)\left(1\right)\)

\(a,b,c>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\left(2\right)\);

\(b^2+c^2\ge2bc\left(3\right)\)

\(c^2+a^2\ge2ca\left(4\right)\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge\)\(ab+bc+ca+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow2^2\ge3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow4\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow4+12\ge3\left(ab+bc+ca\right)+12\)

\(\Leftrightarrow3\left(ab+bc+ca\right)+12\le16\left(5\right)\)

Từ (1) và (5), ta được:

\(Q^2\le16\)

\(\Leftrightarrow Q\le4\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=2\end{cases}}\Leftrightarrow a=b=c=\frac{2}{3}\)

Vậy \(maxQ=4\Leftrightarrow a=b=c=\frac{2}{3}\)

23 tháng 3 2021

\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{10\left(a^2+1\right)}{4a}\)

\(S=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

Vì \(a>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a\left(a^2+1\right)}{4\left(a^2+1\right)a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\left(1\right)\)

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+1\ge2a\)

\(\Leftrightarrow9\left(a^2+1\right)\ge9.2a=18a\)

\(\Leftrightarrow\frac{9\left(a^2+1\right)}{4a}\ge\frac{18a}{4a}=\frac{9}{2}\left(2\right)\)(vì \(a>0\))

Từ (1) và (2), ta được:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\ge1+\frac{9}{2}\)

\(\Leftrightarrow S\ge\frac{11}{2}\)

Dấu bằng xảy ra

\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{a^2+1}=\frac{a^2+1}{4a}\\a^2=1\end{cases}}\Leftrightarrow a=1\)(thỏa mãn \(a>0\))

Vậy \(minS=\frac{11}{2}\Leftrightarrow a=1\)

23 tháng 3 2021

Ta có:

\(x+y+z+t=2\)

\(\Rightarrow\left[\left(x+y+z\right)+t\right]^2=4\)

Vì \(x,y,z,t>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

\(\Leftrightarrow\left[\left(x+y+z\right)+t\right]^2\ge4\left(x+y+z\right)t\)

\(\Leftrightarrow4\ge4\left(x+y+z\right)t\)(vì \(\left[\left(x+y+z\right)+t\right]^2=4\))

\(\Leftrightarrow\left(x+y+z\right)t\le1\left(1\right)\)

Ta có: 

\(P=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}=\frac{1.\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)(vì (1))

\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\left(2\right)\)

Đặt \(\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}=A\)thì \(P\ge A\)

Vì \(x,y,z>0\)nên áp dụng bất đẳng thúc Cô-si cho 2 số dương, ta được:

\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge4\left(x+y\right)z\)

Do đó:

\(A=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(\Leftrightarrow A\ge\frac{4\left(x+y\right)^2}{xy}\left(3\right)\)

Từ (2) và (3), ta được:

\(P\ge\frac{4\left(x+y\right)^2}{xy}\left(4\right)\)

Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow4\left(x+y\right)^2\ge16xy\)

\(\Leftrightarrow\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\left(5\right)\)

Từ (4) và (5), ta được:

\(P\ge16\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y>0\\x+y=z>0\\x+y+z=t>0\end{cases}}\)

Mà \(x+y+z+t=2\)nên:

\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}}\)

Vậy \(minP=16\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2};t=1\)