Chứng minh rằng: Trong hình thang, đoạn thẳng nối trung điểm hai đường chéo song song với hai đáy và có độ dài bằng nửa hiệu độ dài hai đáy.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LN
0
PD
0
DL
0
câu này dễ
Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
Hình thang ABCD có AB//CD, AB<CD, E, F lần lượt là trg điểm của AC, BD
Kéo dài EF cắt DC tại I
Tam giác ABF = IDF (gcg)
=> F là trung điểm của AI và AB = DI
=> EF = 1/2 IC và DC-AB=IC
=> đpcm