K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

<=> ax3- 2acx2 + a2bcx + bx2 - 2bxc + ab2c = x3 + 6x2 + 4x - 8

<=> ax3 + ( 2ac + b )x2 + ( a2bc - 2bc )x + ab2c = x3 + 6x2 + 4x - 8

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a=1\\2ac+b=6\\a^2bc-2bc=4\end{cases}};ab^2c=-8\)đến đây tịt :v 

28 tháng 8 2021

(ax + b)(x2 - 2cx + abc) 

= ax3 - 2acx2 + xa2bc + bx2 - 2bcx + ab2

= ax3 + x2(b - 2ac) + x(a2bc - 2bc) + ab2c = x3 + 6x2 + 4x - 8 

Đồng nhất hệ số 

=> a = 1 ; b - 2ac = 6 ; a2bc - 2bc = 4 ; ab2c = -8

Khi đó b - 2c = 6 ; -bc = 4 ; b2c = -8 

=> b = 2 ; c = -2

Vậy a = 1 ; b = 2 ; c = -2

NM
27 tháng 8 2021

ta có \(AB=BC\Rightarrow\Delta ABC\text{ cân tại }B\Rightarrow\widehat{A_1}=\widehat{C_1}\)

mà AC là phân giác của góc A nên \(\widehat{A_1}=\widehat{A_2}\)

vậy ta có : \(\widehat{A_2}=\widehat{C_1}\) mà hai góc này so le nên AD song song BC 

nên ABCD là hình thang

27 tháng 8 2021

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

27 tháng 8 2021

8, \(\left(\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)\right):\frac{x-1}{x^3}\)Với \(x\ne0;\pm1\)

\(=\left(\frac{2}{\left(x+1\right)^3}\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}\left(\frac{x^2+1}{x^2}\right)\right):\frac{x-1}{x^3}\)

\(=\left(\frac{2\left(x+1\right)}{x\left(x+1\right)^3}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right):\frac{x-1}{x^3}=\left(\frac{2x\left(x+1\right)+\left(x+1\right)\left(x^2+1\right)}{x^2\left(x+1\right)^3}\right):\frac{x-1}{x^3}\)

\(=\left(\frac{\left(x+1\right)^3}{x^2\left(x+1\right)^3}\right):\frac{x-1}{x^3}=\frac{1}{x^2}:\frac{x-1}{x^3}=\frac{x}{x-1}\)

27 tháng 8 2021

10, \(\left(\frac{x+1}{x}\right)^2:\left(\frac{x^2+1}{x^2}+\frac{2}{x+1}\left(\frac{1}{x+1}+1\right)\right)\)

\(=\left(\frac{x+1}{x}\right)^2:\left(\frac{x^2+1}{x^2}+\frac{2}{x+1}\left(\frac{x+2}{x+1}\right)\right)\)

\(=\left(\frac{x+1}{x}\right)^2:\left(\frac{x^2+1}{x^2}+\frac{2\left(x+2\right)}{\left(x+1\right)^2}\right)=\left(\frac{x+1}{x}\right)^2:\left(\frac{\left(x^2+1\right)\left(x+1\right)^2+2x^2\left(x+2\right)}{x^2\left(x+1\right)^2}\right)\)

\(=\left(\frac{x+1}{x}\right)^2:\left(\frac{\left(x^2+1\right)\left(x^2+2x+1\right)+2x^3+4x^2}{x^2\left(x+1\right)^2}\right)\)

\(=\left(\frac{x+1}{x}\right)^2:\left(\frac{x^4+2x^3+x^2+x^2+2x+1+2x^3+4x^2}{x^2\left(x+1\right)^2}\right)\)

\(=\left(\frac{x+1}{x}\right)^2:\left(\frac{x^4+4x^3+6x^2+2x+1}{x^2\left(x+1\right)^2}\right)=\frac{\left(x+1\right)^4}{x^4+4x^3+6x^2+2x+1}\)

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm

27 tháng 8 2021

\(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x+3\right)\left(x-3\right)-\left(2x-3\right)^2-\left(5-20x\right)\)

\(=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2-12x+9\right)-5+20x\)

\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2+12x-9-5+20x=24x-30\)

Vậy biểu thức phụ thuộc giá trị biến x 

\(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)

\(=-x\left(x^2+4x+4\right)+4x^2+4x+1+x^3+27-1\)

\(=-x^3-4x^2-4x+4x^2+4x+1+x^3+27-1=27\)

Vậy biểu thức ko phụ thuộc giá trị biến x