K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Ta có : 2x2 + x + a = 2x2 + 6x - 5x - 15 + a + 15

= 2x(x + 3) - 5(x + 3) + a + 15

= (2x - 5)(x + 3) + a + 15 

Để 2x2 + x + 3 \(⋮\)x + 3

Thì a + 15 = 0 

=> a = -15

Vậy a = -15 thì  2x2 + x + 3 \(⋮\)x + 3

27 tháng 8 2021

Áp dụng định lí Bézout : Đa thức f(x) chia hết cho nhị thức g(x) = x + a <=> f(-a) = 0

2x2 + x + a chia hết cho x + 3 <=> 2.(-3)2 - 3 + a = 0 <=> 18 - 3 + a = 0 <=> a = 15

27 tháng 8 2021

\(\frac{4x^2-y^2}{2x^2+y}\)\(=\frac{\left(2x^2-y\right)\left(2x^2+y\right)}{2x^2+y}\)\(=2x^2-y\)

27 tháng 8 2021

Làm giúp tui với đi mà

27 tháng 8 2021

Xét 2 tam giác : Tam giác ADB và tam giác BCA có :

AB−Cạnh chung

^DAB=^CBA(Tính chất của hình thang cân)

AC=BD(Tính chất của hình thang cân)

⇒ΔADB=ΔBCA(c−g−c)

⇒ˆCAB=ˆDBA(2 góc tương ứng)

⇒ˆOAB=ˆOBA

=> Tam giác OAB cân

=> OA = OB

=> Điều phải chứng minh

27 tháng 8 2021

Mới tìm ra đáp án ý a thôi nhaaa !!!

undefined

27 tháng 8 2021

a) Theo định lí Bezout ta có:

\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)

\(\Leftrightarrow75-5a+27=2\)

\(\Leftrightarrow102-5a=2\)

\(\Rightarrow a=20\)

b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)

\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)

Sử dụng phương pháp đồng nhất hệ số ta có:

\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)

27 tháng 8 2021

\(3ax^3+3x^2+x+1⋮3x+1\)

\(\Leftrightarrow x=\frac{-1}{3}\) là nghiệm của phương trình

\(\Leftrightarrow3a\left(-\frac{1}{3}\right)^3+3\left(-\frac{1}{3}\right)^2+\left(-\frac{1}{3}\right)+1=0\)

\(\Leftrightarrow-\frac{a}{9}+\frac{1}{3}-\frac{1}{3}+1=0\)

\(\Leftrightarrow1-\frac{a}{9}=0\)

\(\Leftrightarrow a=9\)

27 tháng 8 2021

Đặt \(Q\left(x\right)=2x^2+x+a\)

Để mà \(Q\left(x\right)⋮x+3\Leftrightarrow Q\left(x\right):x+3\left(dư0\right)\)

Theo định lý \(Bezout:Q\left(-3\right)=0\)( Định lý Bê du=) )

\(\Leftrightarrow2\left(-3\right)^2+\left(-3\right)+a=0\Leftrightarrow15+a=0\Leftrightarrow a=15\)

27 tháng 8 2021

a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).

Xét tam giác vuông AHP và tam giác vuông HAQ có:

Cạnh HA chung

góc PHA=góc HAQ(cmt)

Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).

=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).

Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ

           QH=QE(gt) và HQ=AP(cmt) nên QE=AP

Xét hai tam giác vuông DPA và tam giác vuông AQE có:

           PD=AQ(cmt)

           QE=AP(cmt)

Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)

=>AD=AE(hai cạnh tương ứng)

hay A là trung điểm của DE>

b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.

c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).

Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).

Từ (1) và (2), suy ra PQ=AH.

Hok tốt nhaaaa ~

27 tháng 8 2021

Mik mới bít ý b thôi , còn ý a mik đang nghĩ nha ^^

undefined