Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(3x-1\right)^2-9x^2+1=0\)
\(\Leftrightarrow2x\left(3x-1\right)^2-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[2x\left(3x-1\right)-3x-1\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\6x^2-5x-1=0\left(1\right)\end{cases}}\)
\(\Delta_{\left(1\right)}=5^2+4.6=49>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{5+7}{12}=1\\x_2=\frac{5-7}{12}=\frac{-1}{6}\end{cases}}\)
Vậy tập hợp nghiệm của phương trình \(S=\left\{1;\frac{1}{3};\frac{-1}{6}\right\}\)
Họ Và Tên tham gia nhóm này cho đở chán nha
nhấp vào đây(1) buôn muối có tổ chức | Facebook
a) C/m \(\widehat{PEA}+\widehat{PDA}=90^o+90^o=180^o\) (D,E theo thứ tự là hình chiếu của P trên các đường thẳng AB, AC -> \(PE\perp AC\) ; \(PD\perp AB\))
Mà 2 góc ở vị trí đối nhau -> Tứ giác ADPE nội tiếp (dhnb)
b) \(\widehat{PDA}=90^o\Rightarrow\widehat{PDB}=90^o\left(D\in AB\right)\)-> \(D\in\)đtròn đkính PB (1)
Có: OB = OC = R -> O \(\in\)đường trung trực của BC
Hai tiếp tuyến của (O) tại B, C cắt nhau tại P -> PB = PC (t/c 2 tiếp tuyến cắt nhau) -> P \(\in\)đường trung trực của BC
-> OP là đường trung trực của BC -> OP \(\perp\)BC tại trung điểm của BC
Mà M là trung điểm của BC (gt)
-> \(PM\perp BC\Rightarrow\widehat{PMB}=\widehat{PMC}=90^o\)\(\Rightarrow M\in\)đtròn đkính PB (2)
Từ (1) và (2) -> Tứ giác PDBM nt đtròn đkính PB (btoán quỹ tích)
-> \(\widehat{PDM}=\widehat{PBM}\)(góc nt cùng chắn cung PM) hay \(\widehat{PDM}=\widehat{PBC}\left(M\in BC\right)\)
Lại có: \(\widehat{PBC}=\widehat{BAC}\)(góc tạo bởi tiếp tuyến và dây cung và góc nt chắn cung BC của (O))
-> \(\widehat{BAC}=\widehat{PDM}\)(đpcm)
c) Nối EM
Có: \(\widehat{PEC}=\widehat{PMC}\)(\(\widehat{PEA}=90^o,E\in AC\)) -> E, M \(\in\)đtròn đkính PC
Mà 2 góc ở vị trí đối nhau -> Tứ giác PECM nt đtròn đkính PC -> \(\widehat{PEM}=\widehat{PCM}\)(góc nt cùng chắn cung PM)
Lại có PB = PC (cmt) -> \(\Delta PBC\)cân tại P \(\Rightarrow\widehat{PBM}=\widehat{PCM}\)
\(\Rightarrow\widehat{PEM}=\widehat{PBM}\), mà \(\widehat{PBM}=\widehat{PDM}\)(cmt) -> \(\widehat{PEM}=\widehat{PDM}\)
Vì tứ giác ADPE nội tiếp (cmt) \(\Rightarrow\widehat{A}+\widehat{DPE}=180^o\)(2 góc đối)
Lại có: \(\widehat{BAC}=\widehat{PDM}\)
\(\Rightarrow\widehat{PDM}+\widehat{DPE}=180^o\)mà 2 góc này ở vị trí trong cùng phía
-> PE // DM mà \(PE\perp AC\)\(\Rightarrow DM\perp EA\left(E\in AC\right)\)(3)
Có: \(\widehat{PDM}+\widehat{DPE}=180^o\Rightarrow\widehat{PEM}+\widehat{DPE}=180^o\) (\(\widehat{PEM}=\widehat{PDM}\))
Mà 2 góc nằm ở vị trí trong cùng phía -> PD // EM mà \(PD\perp AB\)\(\rightarrow EM\perp AD\left(D\in AB\right)\)(4)
Từ (3) và (4) xét tam giác ADE -> M là trực tâm của tam giác ADE (đpcm)
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh
\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng holder ta có:
\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)
\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)
Từ đây ta cần chứng minh:
\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )
Vậy có ĐPCM
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)
a, ĐKXĐ : \(x\ne9;x\ge0\)
b, \(T=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}\)
\(=\frac{-3\sqrt{x}-3}{x-9}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\left(\sqrt{x}+3\right)^2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{-3\left(\sqrt{x}+3\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
a, Với \(x\ge0;x\ne1\)
\(A=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\frac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b, Để A nguyên khi \(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=\frac{2}{\sqrt{x}+1}\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}+1\) | 1 | -1 | 2 | -2 |
x | 0 | vô lí | 1 | vô lí |
Δ = b2 - 4ac = [ -( m - 1 ) ]2 + 12
= ( m - 1 )2 + 12 ≥ 12 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt ∀ m ( đpcm )