9x\(^2\)-7x-8+4\(\sqrt{x+5}\)= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K D E I H
a/ Xét tg vuông ABK và tg vuông CDK có
\(\widehat{AKB}=\widehat{CKD}=90^o\)
\(\widehat{BAD}=\widehat{DCB}\) (góc nội tiếp đường tròn cùng chắn cung BD)
=> tg ABK đồng dạng với tg CDK \(\Rightarrow\frac{KA}{KC}=\frac{KB}{KD}\Rightarrow KA.KD=KB.KC\)
b/ Nối CH cắt AB tại I
Xét tg CDH có
\(CK\perp DH\) (đề bài) => CK là đường cao
\(KH=KD\) (đề bài) => CK là đường trung tuyến
=> tg CDH cân tại C (tg có đường cao đồng thời là đường trung tuyến => tg đó là tg cân)
\(\Rightarrow\widehat{KCD}=\widehat{KCH}\) (trong tg cân đường cao đồng thời là đường phân giác) (1)
\(\widehat{ABC}=\widehat{ADC}\) (góc nội tiếp cùng chắn cung AC) (2)
Xét tg vuông CKD có \(\widehat{KCD}+\widehat{ADC}=90^o\) (3)
Từ (1) (2) (3) => \(\widehat{KCH}+\widehat{ABC}=90^o\Rightarrow\widehat{BIC}=90^o\Rightarrow CH\perp AB\)
Mà \(AH\perp BC\)
=> H là trực tâm của tg ABC
c/
Ta có tg ADE là tg nội tiếp đường tròn (O)
Ta có
\(BC\perp AD\)
DE//BC
\(\Rightarrow DE\perp AD\Rightarrow\widehat{ADE}=90^0\) => AE là đường kính đường tròn (O) => DE đi qua O => A; O; E thẳng hàng
c, thiếu đề rồi phải có tọa đọ B nữa chứ ?
a, \(\left(2\sqrt{44}-3\sqrt{77}\right):\sqrt{11}+\sqrt{63}\)
\(=\frac{\left(4\sqrt{11}-3\sqrt{7}\sqrt{11}\right)}{\sqrt{11}}+3\sqrt{7}\)
\(=4-3\sqrt{7}+3\sqrt{7}=4\)
b,Ta có : \(\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}+3}\right).\frac{x-9}{6}\)
\(=\frac{\sqrt{x}+3-\sqrt{x}+6}{x-9}.\frac{x-9}{6}=\frac{9}{6}=\frac{3}{2}\)
sửa ý b, bấm nhầm
\(\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}+3}\right).\frac{x-9}{6}\)
\(=\frac{\sqrt{x}+3-\sqrt{x}+3}{x-9}.\frac{x-9}{6}=\frac{6}{6}=1\)( đpcm )
cái này tự làm đi dễ mà
Dùng pitago tính BC
rồi tính sin B ra góc B
A B C H E F 6 8
Áp dụng đinh lí Pytago cho tam giác ABC có AH là đường cao
\(BC^2=AC^2+AB^2=36+64=100\Rightarrow BC=10\)
\(\Rightarrow\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)
a, Với m=2
=>\(\hept{\begin{cases}2x+4y=-10\\-x+y=0\end{cases}}\)
=>\(\hept{\begin{cases}2x+4y=-10\\-2x+2y=0\end{cases}}\)
=>\(\hept{\begin{cases}6y=-10\\-x+y=0\end{cases}}\)
=>\(\hept{\begin{cases}y=\frac{-5}{3}\\-x=0-\frac{-5}{3}\end{cases}}\)
=>\(\hept{\begin{cases}y=\frac{-5}{3}\\x=\frac{-5}{3}\end{cases}}\)
Vậy khi m=2 thì hpt có nghiệm duy nhất \(\left(\frac{-5}{3};\frac{-5}{3}\right)\)
b, \(\hept{\begin{cases}mx+2my=-10\left(1\right)\\\left(1-m\right)x+y=0\left(2\right)\end{cases}}\)
Từ (2)=> y=0-(1-m)x (3)
Thế (3) vào (1) ta được : \(mx+2m\left[0-\left(1-m\right)x\right]=-10\)
=>\(mx+2m\left[0-x+mx\right]=-10\)
=>\(mx-2mx+2m^2x=-10\)
=>\(\left(m-2m+2m^2\right)x=-10\)
=>\(\left(2m^2-m\right)x=-10\)
Để hpt có nghiệm duy nhất =>\(2m^2-m\ne0\)
=>\(m\left(2m-1\right)\ne0\)
=>\(\hept{\begin{cases}m\ne0\\2m-1\ne0\end{cases}}\)
=>\(\hept{\begin{cases}m\ne0\\m\ne\frac{1}{2}\end{cases}}\)
\(\sqrt{x-2}+\sqrt{9x-18}=16\) ( ĐK : \(x\ge2\))
\(\Leftrightarrow\sqrt{x-2}+3\cdot\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}\cdot\left(1+3\right)=16\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmđk\right)\)
Vậy PT có nghiệm x = 18
\(\sqrt{x-2}+\sqrt{9x-18}=16\left(x\ge2\right)\)
\(\Leftrightarrow4\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\Leftrightarrow x=18\left(tm\right)\)
VẬY PT có nghiệm x=18
PT ( 1 ) có \(\Delta=[-\left(m-1\right)]^2-4\cdot1\cdot\left(-m\right)\):
\(=m^2-2m+1+4m\)
\(=m^2+2m+1=\left(m+1\right)^2\)
Để PT ( 1 ) có 2 nghiệm pb \(x_1,x_2\)
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(m+1\right)^2>0\)
\(\Leftrightarrow m+1\ne0\)
\(\Leftrightarrow m\ne-1\)
Với \(m\ne-1\), áp dụng hệ thức Vi-ét cho PT ( 1 ) ta đc :
\(x_1+x_2=m-1\)
\(x_1\cdot x_2=-m\)
Theo đề bài :
\(x_1\cdot\left(3+x_1\right)+x_2\cdot\left(3+x_2\right)=-4\)
\(\Leftrightarrow3x_1+x_1^2+3x_2+x_2^2=-4\)
\(\Leftrightarrow3\cdot\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=-4\)
\(\Leftrightarrow3\cdot\left(m-1\right)+\left(m-1\right)^2-2\cdot\left(-m\right)=-4\)
\(\Leftrightarrow3m-3+m^2-2m+1+2m+4=0\)
\(\Leftrightarrow m^2+3m+2=0\)\(\Leftrightarrow\left(m+1\right)\cdot\left(m+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\m+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\left(ktm\right)\\m=-2\left(tm\right)\end{cases}}\)
Vậy m = -2 là giá trị cần tìm
M làm hết r đấy nhưng chắc là ko tải hết lên đc
Giải đến đấy rùi thì chắc bạn tự giải tiếp đc đúng hông???