K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 5 2021

\(A=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2=\sqrt{4}>\sqrt{3}\).

DD
31 tháng 5 2021

\(a,b\)là hai nghiệm phân biệt của phương trình: \(x^2-2021x-c=0\).

Theo Viet: 

\(\hept{\begin{cases}a+b=2021\\ab=-c\end{cases}}\)

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{2021}{-c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2021}{c}=0\)

23 tháng 8 2021

là sao bạn nhỉ

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r

30 tháng 5 2021

b, Để hệ phương trình có hệ duy nhất khi : \(\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Vơí \(m\ne\pm1\)

\(\hept{\begin{cases}x+my=m+1\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}mx+m^2y=m^2+m\\mx+y=2m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m^2-1\right)y=m^2-m\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)\left(m+1\right)y=m\left(m-1\right)\\mx+y=2m\end{cases}}}\)

\(\left(1\right)\Rightarrow\left(m-1\right)\left(my+y-m\right)=0\Leftrightarrow y=\frac{m}{m+1}\)

Thay vào (2) ta được : \(mx+\frac{m}{m+1}=2m\Leftrightarrow mx\left(m+1\right)+m=2m\left(m+1\right)\)

\(\Leftrightarrow m^2x+mx+m=2m^2+2m\Leftrightarrow x\left(m^2+m\right)=2m^2+m\)

\(\Leftrightarrow x=\frac{2m^2+m}{m^2+m}=\frac{2m+1}{m+1}\)

Vậy hệ phương trình có nghiệm duy nhất là ( x ; y ) = \(\left(\frac{2m+1}{m+1};\frac{m}{m+1}\right)\)

Thay vào biểu thức trên ta được : \(x+5y=4\Rightarrow\frac{2m+1}{m+1}+\frac{5m}{m+1}=4\)ĐK : \(m\ne-1\)

\(\Rightarrow7m+1=4m+4\Leftrightarrow3m-3=0\Leftrightarrow m=1\)( tmđk ) 

\(ĐKXĐ:x\ge0;y\ge0\)

Ta có:\(pt\Rightarrow2\sqrt{3}-3=\sqrt{3}x+\sqrt{3}y-6xy\)

\(\Leftrightarrow\sqrt{3}\left(x+y-2\right)=3\left(2xy-1\right)\)

\(\Leftrightarrow x+y-2=\sqrt{3}\left(2xy-1\right)\)

Nếu \(2xy-1\ne0\),ta có:

\(\Rightarrow\sqrt{3}=\frac{x+y-2}{2xy-1}\inℚ\left(L\right)\)

Do đó:2xy-1=0,từ đó suy ra x+y-2=0,do đó ta có hệ phương trình:

\(\hept{\begin{cases}2xy-1=0\\x+y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x=2-y\end{cases}\Leftrightarrow\left(2-y\right)y=\frac{1}{2}}\)

\(\Leftrightarrow y^2-2y+\frac{1}{2}=0\Leftrightarrow\left(y-1\right)^2=\frac{1}{2}\Rightarrow\orbr{\begin{cases}y-1=\frac{1}{\sqrt{2}}\\y-1=-\frac{1}{\sqrt{2}}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=1+\frac{1}{\sqrt{2}}\Rightarrow x=1-\frac{1}{\sqrt{2}}\\y=1-\frac{1}{\sqrt{2}}\Rightarrow x=1+\frac{1}{\sqrt{2}}\end{cases}}\left(TM\right)\)

Vậy tập nghiệm của pt là:\(\left(x,y\right)=\left\{\left(1-\frac{1}{\sqrt{2}};1+\frac{1}{\sqrt{2}}\right),\left(1+\frac{1}{\sqrt{2}};1-\frac{1}{\sqrt{2}}\right)\right\}\)

31 tháng 5 2021

\(A=\frac{3+2\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}-\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

cái phân thức thứ 2 mình trục căn thức nhé 

\(=\sqrt{3}+2-\sqrt{3}-\sqrt{2}+\sqrt{2}=2\)

30 tháng 5 2021

\(A=\frac{3+2\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(=\sqrt{3}+2-\sqrt{3}-\sqrt{2}+\sqrt{2}=2\)

30 tháng 5 2021

lớp 9 cơ á, cao nhể