\(A=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\).So sánh A và\(\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b\)là hai nghiệm phân biệt của phương trình: \(x^2-2021x-c=0\).
Theo Viet:
\(\hept{\begin{cases}a+b=2021\\ab=-c\end{cases}}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{2021}{-c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2021}{c}=0\)
b, Để hệ phương trình có hệ duy nhất khi : \(\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Vơí \(m\ne\pm1\)
\(\hept{\begin{cases}x+my=m+1\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}mx+m^2y=m^2+m\\mx+y=2m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m^2-1\right)y=m^2-m\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)\left(m+1\right)y=m\left(m-1\right)\\mx+y=2m\end{cases}}}\)
\(\left(1\right)\Rightarrow\left(m-1\right)\left(my+y-m\right)=0\Leftrightarrow y=\frac{m}{m+1}\)
Thay vào (2) ta được : \(mx+\frac{m}{m+1}=2m\Leftrightarrow mx\left(m+1\right)+m=2m\left(m+1\right)\)
\(\Leftrightarrow m^2x+mx+m=2m^2+2m\Leftrightarrow x\left(m^2+m\right)=2m^2+m\)
\(\Leftrightarrow x=\frac{2m^2+m}{m^2+m}=\frac{2m+1}{m+1}\)
Vậy hệ phương trình có nghiệm duy nhất là ( x ; y ) = \(\left(\frac{2m+1}{m+1};\frac{m}{m+1}\right)\)
Thay vào biểu thức trên ta được : \(x+5y=4\Rightarrow\frac{2m+1}{m+1}+\frac{5m}{m+1}=4\)ĐK : \(m\ne-1\)
\(\Rightarrow7m+1=4m+4\Leftrightarrow3m-3=0\Leftrightarrow m=1\)( tmđk )
\(ĐKXĐ:x\ge0;y\ge0\)
Ta có:\(pt\Rightarrow2\sqrt{3}-3=\sqrt{3}x+\sqrt{3}y-6xy\)
\(\Leftrightarrow\sqrt{3}\left(x+y-2\right)=3\left(2xy-1\right)\)
\(\Leftrightarrow x+y-2=\sqrt{3}\left(2xy-1\right)\)
Nếu \(2xy-1\ne0\),ta có:
\(\Rightarrow\sqrt{3}=\frac{x+y-2}{2xy-1}\inℚ\left(L\right)\)
Do đó:2xy-1=0,từ đó suy ra x+y-2=0,do đó ta có hệ phương trình:
\(\hept{\begin{cases}2xy-1=0\\x+y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x=2-y\end{cases}\Leftrightarrow\left(2-y\right)y=\frac{1}{2}}\)
\(\Leftrightarrow y^2-2y+\frac{1}{2}=0\Leftrightarrow\left(y-1\right)^2=\frac{1}{2}\Rightarrow\orbr{\begin{cases}y-1=\frac{1}{\sqrt{2}}\\y-1=-\frac{1}{\sqrt{2}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1+\frac{1}{\sqrt{2}}\Rightarrow x=1-\frac{1}{\sqrt{2}}\\y=1-\frac{1}{\sqrt{2}}\Rightarrow x=1+\frac{1}{\sqrt{2}}\end{cases}}\left(TM\right)\)
Vậy tập nghiệm của pt là:\(\left(x,y\right)=\left\{\left(1-\frac{1}{\sqrt{2}};1+\frac{1}{\sqrt{2}}\right),\left(1+\frac{1}{\sqrt{2}};1-\frac{1}{\sqrt{2}}\right)\right\}\)
\(A=\frac{3+2\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}-\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
cái phân thức thứ 2 mình trục căn thức nhé
\(=\sqrt{3}+2-\sqrt{3}-\sqrt{2}+\sqrt{2}=2\)
\(A=\frac{3+2\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=\sqrt{3}+2-\sqrt{3}-\sqrt{2}+\sqrt{2}=2\)
\(A=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2=\sqrt{4}>\sqrt{3}\).