K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

\(x\left(x+1\right)\left(x+2\right)=x^3+x^2+8\)

\(\Leftrightarrow x^2+x-4=0\)

\(\Leftrightarrow\left(x^2+\frac{2x}{2}+\frac{1}{4}\right)-4-\frac{1}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{17}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{17}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{2}-\frac{1}{2}\\x=-\frac{\sqrt{17}}{2}-\frac{1}{2}\end{cases}}\)

13 tháng 1 2017

a​2(b-c)+b​2(c-a)+c​2(a-b)=0

\(\Leftrightarrow\)(x-y)(z-x)(z-y)=0

Vậy trong 3 số a, b, c tồn tại 2 số bằng nhau 

13 tháng 1 2017

Khó hiểu quá

Bạn giải rõ giúp mình với ! 

13 tháng 1 2017

Ta có : 20172018 = ( 20172 )1009 = ( .....9 )1009 

Vì ( .....9 )2n+1 có chữ số tận cùng là 9 => ( ......9 )1009 có chữ số tận cùng là 9

=> 20172018 có chữ số tận cùng là 9

17 tháng 2 2022

hề hề hề

13 tháng 1 2017

mình dốt hình lắm chỉ biết số học thôi

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

13 tháng 1 2017

x=-500

13 tháng 1 2017

x + 100 = 200 - 700 + 100

x + 100 = - 500 + 100

x + 100 = - 400

x          = - 400 - 100

x          = - 500

13 tháng 1 2017

Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta đặt: \(\hept{\begin{cases}ab=x\\bc=y\\ca=z\end{cases}}\)

\(\Rightarrow x+y+z=0\)

Ta cần chứng minh

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\left(bc\right)^3+\left(ca\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x^3+3xy\left(x+y\right)+y^3\right)+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(z^2+y^2+2xy-yz-zx+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)(đúng)

\(\RightarrowĐPCM\)

13 tháng 1 2017

Ta có:

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow abc^2+ab^2c+a^2bc-ab-bc-ca=0\left(1\right)\)

Ta cần chứng minh

\(b\left(a^2-bc\right)\left(1-ac\right)=a\left(1-bc\right)\left(b^2-ac\right)\)

\(\Leftrightarrow ab^2c^2-a^2bc^2+ab^3c-b^2c-a^3bc+a^2c-ab^2+a^2b=0\)

\(\Leftrightarrow b\left(abc^2+ab^2c-bc-ab\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)

\(\Leftrightarrow b\left(ac-a^2bc\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)

\(\Leftrightarrow-a\left(ab^2c+abc^2+a^2bc-bc-ac-ab\right)=0\)(theo (1) thì đúng)

\(\RightarrowĐPCM\)

19 tháng 3 2020

Ta có: (x-1)(x+1)-(x+2)2=3

<=> x2-1-x2-4x-4=0

<=> -4x=8

<=> x=-2

Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6

Ta có:

6 x (-6)-5m=3+3m(-6)

<=> -5m+18m=39

<=> 13m=39

<=. m=3

Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3

13 tháng 1 2017

Ta có:

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)

\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)

Ta lại có

\(6x-5m=3+3mx\)

\(\Leftrightarrow x\left(6-3m\right)=3+5m\)

\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)

Vì pt này có nghiệm gấp 3 lần pt trên nên

\(\frac{3+5m}{6-3m}=6\)

\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)

13 tháng 1 2017

Thay x=-5 , ta co : 

2.m.(-5)=1/3m-6.(-5)

-10m=1/3m+30

-10m-1/3m=30

-31/3m=30

m=-90/31

13 tháng 1 2017

-10m=1/3.m+30

m=-90/31