cho a b c thỏa mãn \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=2009\end{cases}}\)
Tính A=\(a^4+b^4+c^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt: \(x+\frac{1}{x}=a\)
Ta có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
\(x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)^2-2\)
\(=\left(a^3-3a\right)^2-2\)
\(\Rightarrow M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^6-\left(a^3-3a\right)^2+2-2}{a^3+a^3-3a}\)
\(=\frac{\left(a^3+a^3-3a\right)\left(a^3-a^3+3a\right)}{\left(a^3+a^3-3a\right)}=3a\)
\(=3.\left(x+\frac{1}{x}\right)=\frac{3x^2+3}{x}\)
b/ \(\frac{3x^2+3}{x}=3x+\frac{3}{x}\ge2.3=6\)
Đấu = xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)
\(1^2+2^2+...+n^2=\frac{1}{6}\cdot n\left(n+1\right)\left(2n+1\right)\)
suy ra a=1/6
\(VT=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+3\right)\left(x+4\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+3}-\frac{1}{x+4}\)
\(=\frac{1}{x}-\frac{1}{x+4}=\frac{x+4-x}{x\left(x+4\right)}=\frac{4}{x\left(x+4\right)}\)
\(\Rightarrow\frac{4}{x\left(x+4\right)}=\frac{m}{x\left(x+4\right)}=VP\Rightarrow m=4\)
link nè bạn http://text.123doc.org/document/605050-cac-bai-toan-lien-quan-den-tinh-toan-va-chung-minh-trong-da-giac.htm
k mk nhé các bạn thanks
Ta có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2-a^2c^2-b^2c^2\right)=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
Ta lại có: \(a^2+b^2+c^2=2009\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2009^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=2009^2\)
\(\Leftrightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
thanhs