Cho hai đa thức sau
P(x) = x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4 x
Q(x) = 5x4 - x5 + x2 - 2x3 + 3x2 -1
a chứng tỏ x=o là nghiệm của đa thức P(x) nhưng không là ngiệm của Q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình nghiệm nguyên hay như nào em?
a.
\(A=x\left(1-2x\right)=-2x^2+x=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\)
\(A_{max}=\dfrac{1}{8}\) khi \(x=\dfrac{1}{2}\)
b.
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) (do \(x+y+z=2024\))
\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{x\left(y+z\right)+z\left(y+z\right)}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+y+z=z\\x+y+z=x\\x+y+z=y\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2024=z\\2024=x\\2024=y\end{matrix}\right.\) (đpcm)
\(u_{n+1}=u_n+\dfrac{1}{n\left(n+1\right)}\Rightarrow u_{n+1}=u_n+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow u_{n+1}+\dfrac{1}{n+1}=u_n+\dfrac{1}{n}\)
Đặt \(u_n+\dfrac{1}{n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1+\dfrac{1}{1}=2\\v_{n+1}=v_n\end{matrix}\right.\)
Từ \(v_{n+1}=v_n\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=2\)
\(\Rightarrow v_n=2\Rightarrow u_n+\dfrac{1}{n}=2\)
\(\Rightarrow u_n=2-\dfrac{1}{n}=\dfrac{2n-1}{n}\)
\(\Rightarrow u_{2024}=\dfrac{2.2024-1}{2024}=\dfrac{4047}{2024}\)
a: Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC tại I và I là trung điểm của BC
b: Xét (O) có
\(\widehat{MBT}\) là góc tạo bởi tiếp tuyến BM và dây cung BT
\(\widehat{BAT}\) là góc nội tiếp chắn cung BT
Do đó: \(\widehat{MBT}=\widehat{BAT}\)
Xét ΔMBT và ΔMAB có
\(\widehat{MBT}=\widehat{MAB}\)
\(\widehat{BMT}\) chung
Do đó; ΔMBT~ΔMAB
=>\(\dfrac{BT}{AB}=\dfrac{MB}{MA}=\dfrac{MT}{MB}\)
=>\(\left(\dfrac{BT}{AB}\right)^2=\dfrac{MB}{MA}\cdot\dfrac{MT}{MA}=\dfrac{MT}{MA}\)
=>\(MT\cdot AB^2=MA\cdot BT^2\)
thời gian đi của ng đó là
9h54p - 8h30p =1h26p
=43/30 giờ
vận tốc ng đó là :
70 : 43 x 30= 2100/43
Gọi giá 1kWh ở mức 1 là x(đồng)
(ĐK: x>0)
Giá 1kWh ở mức 2 là x+56(đồng)
Giá 1kWh ở mức 3 là x+56+280=x+336(đồng)
Số kWh ở mức 3 sử dụng là:
131-50-50=31(kWh)
Số tiền phải trả cho 50kWh ở mức 1 là 50x(đồng)
Số tiền phải trả cho 50kWh ở mức 2 là 50(x+56)(đồng)
Số tiền phải trả cho 31kWh ở mức 3 là 31(x+336)(đồng)
Do đó, ta có phương trình:
50x+50(x+56)+31(x+336)=233034
=>131x+13216=233034
=>131x=219818
=>x=1678(nhận)
Vậy: Giá 1kWh ở mức 1 là 1678 đồng
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow CD\perp\left(SAD\right)\)
b.
\(V=\dfrac{1}{3}SA.AB.AD=2a^3\)
`#3107.101107`
Thay `x = 0` vào đa thức `P(x):`
`P(0) = 0^5 - 3*0^2 + 7*0^4 - 9*0^3 + 0^2 - 1/4 * 0`
`= 0`
`=> x = 0` là nghiệm của đa thức `P(x)`
Thay `x = 0` vào đa thức `Q(x):`
`Q(0) = 5*0^4 - 0^5 + 0^2 - 2*0^3 + 3*0^2 - 1`
`= -1`
`=> x = 0` không phải là nghiệm của đa thức `Q(x).`