cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O), đường cao AD. gọi E và F lần lượt là hình chiếu vuông góc của A lên tiếp tuyến tại B và C của đường tròn
1. Chứng minh tứ giác AEBD là tứ giác nội tiếp
2. Chứng minh ABC = ADF
3. Chứng minh AD2 = AE.AF
4. Gọi M, N lần lượt là trung điểm của AE và AF, chứng minh rằng nếu AD = AM + AN thì 3 điểm A, O, D thẳng hàng
1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.
2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:
\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)
Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)
3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)
Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC
Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A
Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.