K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2024

_5/8

 

9 tháng 5 2024

-5/8

 

9 tháng 5 2024

Em xem lại đề nhé, thiếu dữ liệu rồi

9 tháng 5 2024

Tuần thứ nhất đội đó làm được \(\dfrac{2}{9}\) đoạn đường. Tuần thứ hai đội đó không làm được đoạn đường nào. 

Vậy để xong công việc, thì sau hai tuần đội đó còn phải sửa số phần đoạn đường là:

                      1 - \(\dfrac{2}{9}\)  = \(\dfrac{7}{9}\) (đoạn đường)

Đáp số: \(\dfrac{7}{9}\) đoạn đường. 

9 tháng 5 2024

Bậc của đơn thức đã cho là:

\(3+2+1=6\)

Chọn C

9 tháng 5 2024

cnay là đa thức mà c=)))

 

Câu 1: \(a\cdot\sqrt[3]{a}=a\cdot a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}}\)

=>Chọn C

Câu 2: 

ĐKXĐ: x+3>0

=>x>-3

=>Chọn C

Câu 3: 

\(3^{x+2}=27\)

=>\(3^{x+2}=3^3\)

=>x+2=3

=>x=1

Câu 4:

ĐKXĐ: x>0

\(log_2^2x-5\cdot log_2x-6< =0\)

=>\(\left(log_2x-6\right)\left(log_2x+1\right)< =0\)

=>\(log_2x-6< =0\)

=>\(log_2x< =6\)

=>x<=64

=>0<x<=64

=>Chọn B

Câu 9:

\(P\left(AB\right)=0,7\cdot0,2=0,14\)

=>Chọn A

Câu 9:

\(P\left(\overline{A}\right)=1-0,4=0,6\)

\(P\left(\overline{A}B\right)=0,6\cdot0,5=0,3\)

=>Chọn B

Câu 10:

A: "Tổng số chấm trên hai con xúc sắc là 5"

=>A={(1;4);(2;3);(3;2);(4;1)}

B: "Tích số chấm trên hai con xúc sắc là 6"

=>B={(1;6);(6;1);(2;3);(3;2)}

=>\(A\cap B=\left\{\left(2;3\right);\left(3;2\right)\right\}\)

=>Chọn D

Câu 11:

 

A: "Tổng số chấm trên hai con xúc sắc là 7"

=>A={(1;6);(2;5);(5;2);(6;1);(3;4);(4;3)}

B: "Tích số chấm trên hai con xúc sắc là 10"

=>B={(2;5);(5;2)}

=>\(A\cap B=\left\{\left(2;5\right);\left(5;2\right)\right\}\)

=>Chọn A

Câu 11:

\(f\left(x\right)=2x+cosx\)

=>\(f'\left(x\right)=2-sinx\)

\(-1< =-sinx< =1\)

=>\(-1+2< =f\left(x\right)< =1+2\)

=>1<=f(x)<=3

=>Chọn B

Câu 12:

\(y=x^3-3x^2+2\)

=>\(y'=3x^2-3\cdot2x=3x^2-6x\)

\(y'\left(-1\right)=3\cdot\left(-1\right)^2-6\cdot\left(-1\right)=3+6=9\)

\(y\left(-1\right)=\left(-1\right)^3-3\cdot\left(-1\right)^2+2=-1+2-3=-4+2=-2\)

Phương trình tiếp tuyến tại x=-1 là:

y-y(-1)=y'(-1)(x+1)

=>y-(-2)=9(x+1)

=>y+2=9x+9

=>y=9x+7

=>Chọn B

Câu 15;

a: \(A=\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

Ta có: \(10^8-1>10^8-3\)

=>\(\dfrac{3}{10^8-1}< \dfrac{3}{10^8-3}\)

=>\(\dfrac{3}{10^8-1}+1< \dfrac{3}{10^8-3}+1\)

=>A<B

b: \(M=\dfrac{2^2}{1\cdot3}+\dfrac{2^2}{3\cdot5}+...+\dfrac{2^2}{197\cdot199}\)

\(=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{197\cdot199}\right)\)

\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)

\(=2\left(1-\dfrac{1}{199}\right)=2\cdot\dfrac{198}{199}=\dfrac{396}{199}\)

9 tháng 5 2024

em can cach giai

 

Câu 10:

\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(4m-3\right)\)

\(=4m^2-16m+12=4\left(m^2-4m+3\right)=4\left(m-3\right)\left(m-1\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4(m-3)(m-1)>0

=>(m-3)(m-1)>0

=>\(\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\)

9 tháng 5 2024

D
datcoder
CTVVIP
9 tháng 5 2024

\(x^2-2mx+4m-3=0\) (1)

Ta có \(\Delta'=\left(-1\right)^2-\left(4m-3\right)=1-4m+3=-4m+4\)

Phương trình (1) có 2 nghiệm phân biệt => \(\Delta'>0\Leftrightarrow-4m+4>0\)

\(\Leftrightarrow4>4m\\ \Leftrightarrow1>m\)

Vậy phương trình có 2 nghiệm phân biệt khi m < 1

9 tháng 5 2024

\(x^2\) - 2m\(x\) + 4m - 3 = 0

\(\Delta^,\) = 11 - (4m - 3) = 1 - 4m + 3 = 4 - 4m

Phương trình đã cho có hai nghiệm phân biệt khi và chỉ khi 

\(\Delta\), > 0 ⇒ 4 -  4m > 0 ⇒ 4m < 4 ⇒ m < 1;

Kết luận phương trình đã cho có hai nghiệm phân biệt khi và chỉ khi m < 1 

9 tháng 5 2024

Số số hạng của S:

100 - 51 + 1 = 50 (số)

Ta có:

1/51 > 1/100

1/52 > 1/100

1/53 > 1/100

...

1/99 > 1/100

1/100 = 1/100

Cộng vế với vế, ta có:

S > 1/100 + 1/100 + 1/100 + ... + 1/100 (50 số 1/100)

= 50/100

= 1/2

Vậy S > 1/2

9 tháng 5 2024

S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) +...+\(\dfrac{1}{98}\) + \(\dfrac{1}{100}\)

Tổng S có số phân số là: (100 - 51) : 1 + 1  = 50

Mặt khác ta có: \(\dfrac{1}{51}\) > \(\dfrac{1}{52}\) > \(\dfrac{1}{53}\)> ...> \(\dfrac{1}{100}\) 

     ⇒ \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) + \(\dfrac{1}{100}\)+...+ \(\dfrac{1}{100}\)

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) x 50

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 Vậy S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 

9 tháng 5 2024

a) -24/x + 17/x = -7/x

Để -24/x + 7/x là số nguyên thì 7 ⋮ x

⇒ x ∈ Ư(7) = {-7; -1; 1; 7}

b) (x - 8)/(x + 1) + (x + 2)/(x + 1)

= (x - 8 + x + 2)/(x + 1)

= (2x + 6)/(x + 1)

= (2x + 2 + 4)/(x + 1)

= [2(x + 1) + 4)]/(x + 1)

= 2 + 4/(x + 1)

Để biểu thức đã cho là số nguyên thì 4 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}

⇒ x ∈ {-5; -3; -2; 0; 1; 3}

a: Xét ΔAMB vuông tại M và ΔAKC vuông tại K có

\(\widehat{MAB}\) chung

Do đó: ΔAMB~ΔAKC

b: ΔAMB~ΔAKC

=>\(\dfrac{AM}{AK}=\dfrac{AB}{AC}\)

=>\(\dfrac{AM}{AB}=\dfrac{AK}{AC}\)

Xét ΔAMK và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AK}{AC}\)

\(\widehat{MAK}\) chung

Do đó: ΔAMK~ΔABC

=>\(\widehat{AMK}=\widehat{ABC}\)

c: Xét ΔABC có

BM,CK là các đường cao

BM cắt CK tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét ΔBDH vuông tại D và ΔBMC vuông tại M có

\(\widehat{DBH}\) chung

Do đó: ΔBDH~ΔBMC

=>\(\dfrac{BD}{BM}=\dfrac{BH}{BC}\)

=>\(BH\cdot BM=BD\cdot BC\)

Xét ΔCDH vuông tại D và ΔCKB vuông tại K có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCKB

=>\(\dfrac{CD}{CK}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CK\)

\(BH\cdot BM+CH\cdot CK\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)