Cho hình thang cân ABCD (AB // CD)
a) Chứng minh góc ACD = góc BDC
b) Gọi E là giao điểm AC và BD.Chứng minh EA = EB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=A\)
no nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooô
câu này biết mới vừa trao đổi bài với thầy xong nhưng ko biết đúng ko
Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)
=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)
Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy
a2 + b2 \(⋮̸\)p (trái với giả thiết)
=> Điều giả sử là sai => đpcm
Đáp án:
`hat{ABC} = 135^0`
`hat{C} = 45^0`
Giải thích các bước giải:
– Kẻ `OH ⊥ DC = {H}`
– Xét tứ giác `ABHD` có:
`AD = AB`
`hat{A} = hat{D} = 90^0`
`=> ABHD` là hình vuông
`=>` {DH=HC=2(cm)AD=BH=2(cm)
Xét `ΔBHC` vuông cân tại `H` có:
`hat {HBC} = hat{C} = 45^0`
`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )
Suy ra: BH // AD
Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: Δ∆BHC vuông cân tại H
⇒ ∠∠C = 450450
∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350
a) Xét tam giác ADC và tam giác BCD, ta có:
AD = BC
\(\widehat{ADC}=\widehat{BCD}\)
CD chung
=> Tam giác ADC = tam giác BCD (c.g.c)
b) Theo đề ra, ta có: AB song song CD
\(\Rightarrow\widehat{ACD}=\widehat{EAB}\) (Hai góc so le trong bằng nhau)
\(\Rightarrow\widehat{BDC}=\widehat{EBA}\) (Hai góc so le trong bằng nhau)
Theo phần a), ta có: \(\widehat{ACD}=\widehat{BDC}\)
\(\Rightarrow\widehat{EAB}=\widehat{EBA}\)
=> Tam giác EAB cân tại E
=> EA = EB
E D C B A