Tính tổng sau:
A=2+22+23+...+219+220
B=5+52+53+...+550
C=1+3+32+33+...+3100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\overline{40a5b}\) chia hết cho 5 thì \(b\in\left\{0;5\right\}\)
Mà số này chia hết cho 9 nên \(4+0+a+5+b=9+a+b\) ⋮ 9
Với \(b=0\)
\(9+a+0=9+a=9\)
\(\Rightarrow a=0\)
Với \(b=5\)
\(9+a+5=14+a=18\)
\(\Rightarrow a=4\)
Vậy các cặp số (a;b) thỏa là \(\left(0;0\right);\left(4;5\right)\)
Ta có số: \(\overline{9237a}\) để số này chia hết cho 2 thì:
\(a\in\left\{0;2;4;6;8\right\}\) (vì số chia hết cho 2 có chữ số tận cùng là 0, 2, 4, 6, 8)
Mà số này lại chia hết cho 9 nên: \(9+2+3+7+a=21+a\) ⋮ 9
Với \(a=0\Rightarrow21+0=21\) không chia hết cho 9 (loại)
Với \(a=2\Rightarrow21+2=23\) không chia hết cho 9 (loại)
Với \(a=4\Rightarrow21+4=25\) không chia hết cho 9 (loại)
Với \(a=6\Rightarrow21+6=27\) ⋮ 9 (nhận)
Với \(a=8\Rightarrow21+8=29\) không chia hết cho 9 (loại)
Vậy với a=6 thì \(\overline{9237a}\) chia hết cho 2 và 9
Ta có:
2n + 1 = 2n + 6 - 5 = 2(n + 3) - 5
Để (2n + 1) ⋮ (n + 3) thì 5 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-8; -4; -2; 2}
Bài 1
a) x ⋮ 6 ⇒ x ∈ B(6) = {0; 6; 12; 18; 24; ...}
Mà 10 < x < 18 nên x = 12
b) 24 ⋮ x ⇒ x ∈ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Mà x > 4
⇒ x ∈ {6; 8; 12; 24}
c) x ⋮ 10 ⇒ x ∈ B(10) = {0; 10; 20; 30; 40;...} (1)
Lại có 45 ⋮ x ⇒ x ∈ Ư(45) = {1; 3; 5; 9; 15; 45} (2)
Từ (1) và (2) ⇒ không tìm được x thỏa mãn đề bài
Bài 2
a) *) (60 + x) ⋮ 5
Mà 60 ⋮ 5
⇒ x ⋮ 5
⇒ x = 5k (k )
*) (72 - x) ⋮ 5
72 chia 5 dư 2
⇒ x chia 5 dư 3
⇒ x = 5k + 3 (k ∈ ℕ)
b) Gọi a, a + 1, a + 2 là ba số tự nhiên liên tiếp (a ∈ ℕ)
Ta có:
a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) ⋮ 3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
a) \(4x+4=16\)
\(4x=12\)
\(x=3\)
b) \(34\left(2x-6\right)=0\)
\(2x=6\)
\(x=3\)
c) \(15:x=5\)
\(x=15:5=3\)
d) \(20-\left(x+14\right)=5\)
\(x+14=20-5=15\)
\(x=15-14=1\)
a) \(4x+4=16\)
\(\Rightarrow4x=16-4\)
\(\Rightarrow4x=12\)
\(\Rightarrow x=\dfrac{12}{4}\)
\(\Rightarrow x=3\)
b) \(34\cdot\left(2x-6\right)=0\)
\(\Rightarrow2x-6=\dfrac{0}{36}\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=\dfrac{6}{2}\)
\(\Rightarrow x=3\)
c) \(15:x=5\)
\(\Rightarrow x=15:5\)
\(\Rightarrow x=3\)
d) \(20-\left(x+14\right)=5\)
\(\Rightarrow x+14=20-5\)
\(\Rightarrow x+14=15\)
\(\Rightarrow x=15-14\)
\(\Rightarrow x=1\)
a) Diện tích phần đất trồng hoa:
(100 - 5) . (85 - 5) = 7600 (m²)
b) Cạnh hình vuông lớn nhất có thể chia là ƯCLN(95; 80)
Ta có:
95 = 5.19
80 = 2⁴.5
ƯCLN(95; 80) = 5
Vậny cạnh lớn nhất của hình vuông có thể chia là 5 m
*) 157²⁴⁰ = [(157⁴)⁵]¹²
157⁴ ≡ 1 (mod 10)
(157⁴)⁵ ≡ 1⁵ (mod 10) ≡ 1 (mod 10)
157²⁴⁰ ≡ [(157⁴)⁵]¹² (mod 10) ≡ 1¹² (mod 10) ≡ 1 (mod 10)
Vậy chữ số tận cùng của 157²⁴⁰ là 1
*) 268²⁶⁸ = [(268⁴)⁵]¹³.268⁸
268⁴ ≡ 6 (mod 10)
(268⁴)⁵ ≡ 6⁵ (mod 10) ≡ 6 (mod 10)
[(268⁴)⁵]¹³ ≡ 6¹³ (mod 10) ≡ 6⁵.6⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
268⁸ ≡ 268⁴ . 268⁴ (mod 10) ≡ 6 . 6 (mod 10) ≡ 6 (mod 10)
268²⁶⁸ ≡ [(268⁴)⁵]¹³.268⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
Vậy chữ số tận cùng của 268²⁶⁸ là 6
*) 2023²⁰²² = 2023²⁰⁰⁰.2023²²
2023³ ≡ 7 (mod 10)
(2023³)⁵ ≡ 7⁵ (mod 10) ≡ 7 (mod 10)
2023¹⁶ ≡ (2023³)⁵ . 2023 (mod 10) ≡ 7.2023 (mod 10) ≡ 1 (mod 10)
2023²⁰⁰⁰ ≡ (2023¹⁶)²⁵⁵ (mod 10) ≡ 1¹²⁵ (mod 10) ≡ 1 (mod 10)
(2023³)⁷ ≡ 7⁷ (mod 10) ≡ 3 (mod 10)
2023²² ≡ (2023³)⁷.2023 (mod 10) ≡ 3.3 (mod 10) ≡ 9 (mod 10)
2023²⁰²² ≡ 2023²⁰⁰⁰.2023²⁰²² (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)
Vậy chữ số tận cùng của 2023²⁰²² là 9
a) \(n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
b) \(2n+1\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
=> \(n\in\left\{0;1;4\right\}\)
c) \(n\left(n+2\right)=8\)
\(\left(n+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}n+1=3\\n+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=2\left(TM\right)\\m=-4\left(L\right)\end{matrix}\right.\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
2A= 2(2+22+23+...+219+220)
2A= 22+23+24+...+220+221
2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)
A=221-2
Vậy A=221-2
Làm tương tự nhee