khi nào 99>100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(10^{18}+10^9+16⋮2\)
Và
\(10^{18}+10^9+16=1000...01000...016\)
=> Tổng các chữ số \(=1+1+1+6=9⋮3\)
\(\Rightarrow10^{18}+10^9+16⋮3\)
Mà 2 và 3 chỉ chia hết cho 1 và chính nó nên
\(10^{18}+10^9+16⋮2x3=6\)
số chia cho 2 dư 1 và chia 3 dư 1 nên chia 6 cũng dư 1
Vậy số đó có dạng: n = (2k x 3k) +1 = 6k + 1
5⋮(n+1)(nϵN)
=>(n+1)ϵƯ(5)={1;5}
n+1 | 1 | 5
n | 0 | 4
Vậy nϵ{0;4}
Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b.
Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có
\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)
và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)
\(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)
\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)
\(=ab\)
Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)
\(b=15\) thì \(a=300\), thỏa mãn.
\(b=30\) thì \(a=150\), không thỏa.
\(b=45\) thì \(a=100\), không thỏa.
\(b=60\) thì \(a=75\), thỏa mãn.
Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\) là các cặp số a, b thỏa mãn yêu cầu bài toán.
Ta thấy \(2A=2+2^3+2^4+...+2^{2022}\)
\(\Rightarrow A=2A-A=2^{2022}+2-2^2-1\) \(=2^{2022}-3\)
Ta có tính chất quan trọng sau: Một số chính phương lẻ khi chia cho 8 chỉ số thể dư 1. (*)
Thật vậy, với mọi k tự nhiên thì \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\). Khi đó do \(4k\left(k+1\right)⋮8\) nên hiển nhiên (*) đúng.
Thế nhưng, ta thấy \(2^{2022}-3\) chia 8 dư 5 nên mâu thuẫn. Vậy A không thể là số chính phương.
Bạn cần trợ giúp bài nào thì nên ghi chú rõ bài đó ra nhé.
Ta thấy số phần thưởng phải là ước chung của 129 và 215.
ƯC (129; 215) = (1; 43}. Vì số học sinh của lớp 6A không thể bằng 1 nên số học sinh lớp 6A bằng 43.
khi cả hai đều là số âm
:))))))))))))))))))))))))))))))))))