Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
23. 19 - 23. 14 + 12018
= 8. 19 - 8. 14 + 1
= 8. ( 19 - 14 ) + 1
= 8. 5 + 1
= 40 + 1
= 41
![](https://rs.olm.vn/images/avt/0.png?1311)
th1:x/2+x/3-1=2
<=>5x/6=3
<=>5x=18
<=>x=18/5
th2:x/2+x/3-1=-2
<=>5x/6=-1
<=>5x=-6
<=>x=-6/5
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x}{2.4}+\dfrac{x}{4.6}+\dfrac{x}{6.8}+...+\dfrac{x}{98.100}=2\\ \Rightarrow x.\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{98.100}\right)=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{98.100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\right]=2\Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{50}{100}-\dfrac{1}{100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\dfrac{49}{100}\right]=2\\ \Rightarrow x.\dfrac{49}{200}=2\\ \Rightarrow x=2:\dfrac{49}{200}\\ \Rightarrow x=2.\dfrac{200}{49}\\ \Rightarrow x=\dfrac{400}{49}\)
x/2.4+x/4.6+...+x/98.100=2
<=>x(1/2.4+1/4.6+...+1/98.100)=2
<=>1/2x(1/2-1/4+1/4-1/6+...+1/98-1/100)=2
<=>1/2x(1/2-1/100)=2
<=>1/2x49/100=2
<=>49/200x=2
<=>x=400/49
\(A=\left|2020-x\right|+\left|2021-x\right|+\left|2022-x\right|\)
\(=\left(\left|2020-x\right|+\left|x-2022\right|\right)+\left|2021-x\right|\)
Nhận xét: \(\left\{{}\begin{matrix}\left|2020-x\right|+\left|x-2022\right|\ge\left|2020-x+x-2022\right|=2\\\left|2021-x\right|\ge0\end{matrix}\right.\)
=> \(A\ge2\)
Dấu = xảy ra khi:
\(\left\{{}\begin{matrix}\left(2020-x\right)\left(x-2022\right)\ge0\\2021-x=0\end{matrix}\right.\Leftrightarrow x=2021\)
A nhỏ nhất \(=2\Leftrightarrow x=2021\)