giai phuong trinh (Đặt ẩn phụ)
(x+2)(x-2)(x2-10)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -12 + 22 - 32 + 42 - ... - 992 + 1002
A = 1002 - 992 + ... + 42 - 32 + 22 - 12
A = (100 + 99).(100 - 99) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)
A = 100 + 99 + ... + 4 + 3 + 2 + 1
\(A=\frac{\left(1+100\right).100}{2}=101.50=5050\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
2B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (32 - 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (34 - 1)(34 + 1)...(332 + 1)
2B = 364 - 1
\(B=\frac{3^{64}-1}{2}\)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Ta dễ thấy tam giác KMN đồng dạng tam giác ABC (g.g)
\(\Rightarrow\frac{S_{KMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2\)
Vì \(S_{ABC}\) và \(MN\) không đổi nên \(S_{KMN}\) đạt giá trị nhỏ nhất khi MN đạt giá trị nhỏ nhất. Khi đó MN sẽ trùng với đường trung bình PQ trên hình vẽ . Vậy \(minS_{KMN}=\frac{1}{4}S_{ABC}\Leftrightarrow MN=PQ\)
Tính A=6n2+n-1 chia cho 3n+2= 2n-1 dư 1
Để 6n2+n-1 chia hết cho 3n+2
ta có:
số dư 1 sẽ chia hết cho 3n+2
nên 3n+2 thuộc Ư(1) {1;-1}
3n+2=1
3n=1-2
3n=-1
n=-1:3
...tương tự thay 3n+2=-1
6n2 + n - 1 chia cho 3n + 2 đc 2n dư -3n-1
=> -3n - 1 = 0
=> n = -1/3
Biể thức trên bằng (3xx+5-3x-5)2=0 nên biểu thức không phụ thuộc vào biến
B = (3x + 5)2 + (3x - 5)2 - 2(3x + 5)(3x - 5)
B = (9x2 + 52 + 2.3x.5) + (9x2 + 52 - 2.3x.5) - 2(9x2 - 52)
B = 18x2 + 2.52 - 18x2 + 2.52
B = 2.2.52
B = 4.25
B = 100, không phụ thuộc vào biến x
=> đpcm
Câu a có số dư là a+12 mà đây là phép chia hết nên a+12=0 nnên a=-12. Câu b
( 2n2 +n -7): ( n-2)= 2n+5 dư 3( mình ko đặt phép tính đc nên bạn tự đặt nhé)
Để ( 2n2 +n -7) : hết cho( n-2)
<=>3 : hết cho 2n +5
<=> 2n+5 thuộc Ư(3)={1;-1;3;-3}
Ta có bảng sau:
2n+5 | 1 | -1 | 3 | -3 |
2n | -4 | -6 | -2 | -8 |
n | -2 | -3 | -1 | -4 |
Mà x thuộc Z
Vậy x thuộc{-1;-2;-3;-4}
(x + 2)(x - 2)(x2 - 10) = 0 => x + 2 = 0 hay x - 2 = 0 hoặc x2 - 10 = 0 =>\(x\in\left\{-\sqrt{10};-2;2;\sqrt{10}\right\}\)