tam giác ABC vuông tại A(AB<AC) .AH là đường cao BC.D đối xứng A qua H.đường thẳng qua D//AB và cắt BC;AC tại M;N.
a)tứ giác ABDM là hình j ?vì sao?
b)cm:M là trực tâm tam giácACD
c)I là trung điểm MC.CM:^HNI=90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính \(\frac{2005a}{ab+2005a+2005}\)\(+\frac{b}{bc+b+2005}\)\(+\frac{c}{ac+c+1}\)
biết \(a.b.c=2005\)
\(\left(15^2-1\right)\left(15^2+1\right)-5^4.3^4\)
= \(\left[\left(15^2\right)^2-1\right]-15^4\)
= \(\left(15^4-1\right)-15^4\)
= \(15^4-1-15^4\)
= \(-1\)
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
Ta có: (x+y)^2 - (x-y)^2 = [(x+y)-(x-y)].[(x+y)+(x-y)]
= (x+y-x+y)(x+y+x-y)
= 2y.2x
= 4xy