Cho hai phân thức \(\frac{A}{B}và\frac{B}{C}\). CMR có vô số cặp phân thức cùng mẫu, có dạng \(\frac{A'}{E}\)và \(\frac{C'}{E}\)thỏa mãn điều kiện \(\frac{A'}{E}=\frac{A}{B}\)và \(\frac{C'}{E}=\frac{C}{D}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = a3 + b3 >= 3\(\sqrt[3]{a^3.b^3}\) ( Cosy)
Dấu "=" xảy ra <=> a = b
Thay a=b vào ab + 1.352 ( a+b) = 3.491
=> a2 + 2.704 a - 3.491 = 0
Giải hệ phương trình bậc 2 trên máy ta được a = 0.9542749186 ( Nhận ) hoặc a = -3.658274919 ( Loại )
Thay a = 0.9542749186 vào a3 + b3 thì P = 2.a3 = 1.738003007
Mình chắc bạn đang học toán máy tính nên mình giải thê nhé
Ta không thể áp dụng định lý Fermat nhỏ ngay được vì 2013 va 2016 không là hai số nguyên tố cùng nhau. Cô gợi ý một cách để có thể áp dụng định lý Fermat nhỏ:
\(2013^{2016}=\left(-3\right)^{2016}\left(mod2016\right)=3^{2016}\left(mod2016\right)\)
\(2016=2^5.3^2.7\).
Gọi x là số dư của \(3^{2016}\)khi chia cho 2016. Ta suy ra:
.\(\hept{\begin{cases}3^{2016}=x\left(mod2^5\right)\\3^{2016}=x\left(mod3^2\right)\\3^{2016}=x\left(mod7\right)\end{cases}}\)
Nhận xét: \(3^8=1\left(mod2^5\right)\),\(3^6=1\left(mod7\right)\), \(3^{2016}=0\left(mod3^2\right)\). Do 2016 đều chia hết cho 8,6 nên:
\(\hept{\begin{cases}3^{2016}=1\left(mod2^5\right)\\3^{2016}=1\left(mod7\right)\\3^{2016}=0\left(mod3^2\right)\end{cases}}\)
Như vậy:
\(\hept{\begin{cases}x=1\left(mod2^5\right)\\x=1\left(mod7\right)\\x=0\left(mod3^2\right)\end{cases}}\)
Từ đó suy ra : \(x-1=BC\left(2^5,7\right)\).và x chia hết cho 9, x < 2016.
Từ đó ta tìm được x = 225.
Đây là trường hợp đặc biệt nên ta áp dụng cách tìm bội chung của lớp 6 nếu giả sử rơi vào trường hợp sau:
\(\hept{\begin{cases}x=5\left(mod2^5\right)\\x=6\left(mod7\right)\\x=2\left(mod3^2\right)\end{cases}}\)thì các bạn có thể áp dụng định lý số dư Trung Hoa.
áp dụng "=] chả vại còn gì, trong trường hợp quá bí" ta có:
số chia là 2016
Vì số dư nhỏ hơn số chia =2015
Xét 2015 trường hợp ta có:....
Ta có:
a^2 + b^2 = 2ab
=> a^2 + b^2 - 2ab = 0
(a-b)^2 = 0
=> a=b