Cho tam giác ABC, trên tia BA lấy D sao cho A là trung điểm BD. Trên tia CB lấy điểm E sao cho B là trung điểm CE. Hai đường thẳng AC và DE cắt nhau tại I. Chứng minh rằng: DI = DE/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề bạn ơi..
Sao lại là : " Gọi E ; F lần lượt là trung điểm của BF và CE " ????
bạn sửa lại đi
Vì ABCD là hình chữ nhật (hcn) => EB=CD , AD=BC.
Mà E là trung diểm ( tđ) của AB , F là tđ của DC
=> AE=EB=DF=FC.
mà AB= 2AD ( giả thiết ( gt)) , AE=2AB , AB=DC
=>AD=AE
=> AEFD là hình vuông ( dấu hệu 1 SGK toán 8 trang 107).
b.chứng minh tương tự ta có ABCF là hình vuông.
Ta có 2 hình vuông (hv) AEFD và ABCF có cạnh chung là EF
=> hv AEFD = hv ABCF
Vì 2 hv trên = nhau => AF=FB=CE=DE( các đường chéo = nhau , cắt nhau tại trung điểm mỗi đường)
=> EM=MF=FN=EN (1)
Trong hình vuông , 2 đường chéo vuông góc với nhau
=> EM vuông góc với AF
\(\Rightarrow\widehat{EMF}=90^o\) (2)
Từ (1) và (2) =>EMFN là hình vuông ( đpcm)
mk vẽ hình hơi xấu đó.
..
Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)