cho tứ giác ABCD có các cặp cạnh đối AB và CD, AD và BC cắt nhau tại M, N. chứng minh các trung điểm I, J, K của AC, BD, MN thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số dụng cụ mỗi xưởng làm theo kế hoạch lần lượt là $a$ và $b$. Theo bài ra ta có:
\(\left\{\begin{matrix} a+b=540\\ 1,15a+1,12b=621\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=540\\ b=0\end{matrix}\right.\) (vô lý)
Bạn xem lại đề.
Bạn cứ lập hệ pt như bài toán bình thường là ra mà, có gì thắc mắc chăng? Thực ra mình cũng chưa làm thử.
Lời giải:
Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.
$\Rightarrow a^2+5a+7\vdots 3$
$\Rightarrow a^2+5a+7-3a-6\vdots 3$
$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$
$\Rightarrow a+1\vdots 3$
$\Rightarrow a=3k-1$ với $k$ nguyên.
Khi đó:
$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$
$=9k^2+9k+3\not\vdots 9$
Ta có đpcm.
Bạn chỉ cần thay tọa độ của A vào ptđt là ra nhé (k=10)