\(4\sqrt{x+3}-\sqrt{x-1}=7\)
giải hộ tớ với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-\left(3x+2\right)\sqrt{3x-1}+2=3x\left(1\right)\)\(\left(x\ge\frac{1}{3}\right)\)
Đặt \(\sqrt{3x-1}=a\ge0\)
\(\Rightarrow\hept{\begin{cases}3x=a^2+1\\3x+2=a^2+3\\3x-1=a^2\end{cases}}\)
Pt (1) \(\Leftrightarrow3x\left(3x-1\right)-\left(3x+2\right)\sqrt{3x-1}+2=0\)
\(\Leftrightarrow\left(a^2+1\right)a^2-\left(a^2+3\right)a+2=0\)
\(\Leftrightarrow a^3+a^2-a^3-3a+2=0\)
\(\Leftrightarrow a^2-3a+2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
TH1: a=1
\(\Rightarrow\sqrt{3x-1}=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow x=\frac{2}{3}\left(tm\right)\)
TH2: a=2
\(\Rightarrow\sqrt{3x-1}=2\)
\(\Leftrightarrow3x-1=4\)
\(\Leftrightarrow x=\frac{5}{3}\left(tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{\frac{2}{3};\frac{5}{3}\right\}\)
ĐK: \(x\ge1\).
Đặt \(\sqrt{x-1}=a,2x-5=b\).
Phương trình ban đầu tương đương với:
\(\sqrt{b^2+5a^2}=2b+7a\)
\(\Rightarrow b^2+5a^2=4b^2+49a^2+28ab\)
\(\Leftrightarrow\left(2a+b\right)\left(22a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=-b\\22a=-3b\end{cases}}\)
Với \(2a=-b\Rightarrow2\sqrt{x-1}=5-2x\)
\(\Rightarrow4\left(x-1\right)=25-20x+4x^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=3-\frac{\sqrt{7}}{2}\\x=3+\frac{\sqrt{7}}{2}\end{cases}}\)
Thử lại chỉ có \(x=3-\frac{\sqrt{7}}{2}\)thỏa mãn.
Với \(22a=-3b\Rightarrow22\sqrt{x-1}=-3\left(2x-5\right)\)
\(\Rightarrow484\left(x-1\right)=9\left(2x-5\right)^2\)
\(\Leftrightarrow x=\frac{83}{9}\pm\frac{55\sqrt{7}}{18}\)
Thử lại đều không thỏa mãn.
ĐK: x \(\ge\)-4
Ta có: \(x^2+\sqrt{x+4}+\sqrt{x+1}=x+27\)
<=> \(x^2-x-27+\sqrt{x+4}+\sqrt{x+11}=0\)
<=> \(x^2-x-20+\sqrt{x+4}-3+\sqrt{x+11}-4=0\)
<=> \(\left(x-5\right)\left(x+4\right)+\frac{x+4-9}{\sqrt{x+4}+3}+\frac{x+11-16}{\sqrt{x+4}+4}=0\)
<=> \(\left(x-5\right)\left(x+4\right)+\frac{x-5}{\sqrt{x+4}+3}+\frac{x-5}{\sqrt{x+4}+4}=0\)
<=> \(\left(x-5\right)\left(x+4+\frac{1}{\sqrt{x+4}+3}+\frac{1}{\sqrt{x+11}+4}\right)=0\)
<=> \(x=5\)
(vì x \(\ge\)-4 => \(x+4\ge0\); \(\frac{1}{\sqrt{x+4}+3}>0\); \(\frac{1}{\sqrt{x+11}+4}>0\)
=> \(x+4+\frac{1}{\sqrt{x+4}+3}+\frac{1}{\sqrt{x+11}+4}>0\))
Đk: \(-2\le x\le3\)
Ta có: \(\sqrt{x+2}-\sqrt{3-x}=x^2-6x+9\)
<=> \(\sqrt{x+2}-2-\sqrt{3-x}+1-x^2+6x-8=0\)
<=> \(\frac{x+2-4}{\sqrt{x+2}+2}-\frac{3-x-1}{\sqrt{3-x}+1}-\left(x-4\right)\left(x-2\right)=0\)
<=> \(\frac{x-2}{\sqrt{x+2}+2}+\frac{x-2}{\sqrt{3-x}+1}-\left(x-4\right)\left(x-2\right)=0\)
<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4=0\left(1\right)\end{cases}}\)
Vì \(-2\le x\le3\)
Do đó: \(\frac{1}{\sqrt{x+2}+2}>0\); \(\frac{1}{\sqrt{3-x}+1}>0\); 4 - x > 0
=> \(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)
=> pt (1) vô nghiệm
Vậy S = {2}
a. ta có
\(A=\frac{\sqrt{20}-3\sqrt{4}}{\sqrt{14-6\sqrt{5}}}-\frac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}\)\(\left(\text{ Nhân cả tử và mẫu với }\sqrt{2}\right)\)
\(=\frac{2\sqrt{5}-6}{\sqrt{\left(3-\sqrt{5}\right)^2}}-\frac{2\sqrt{5}-2\sqrt{7}}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}=\frac{2\sqrt{5}-6}{3-\sqrt{5}}-\frac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)
\(=-2+2=0\)
b. \(A=\sqrt{\frac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{36-3}}-\sqrt{\frac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{25\times3-36}}\)
\(A=\sqrt{\frac{66-33\sqrt{3}}{33}}-\sqrt{\frac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
ta có A<0 và \(A^2=2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}=2\)
Vậy \(A=-\sqrt{2}\)
ĐKXĐ : \(-2\le x\le1\)
Ta có : \(\sqrt{1-x}-\sqrt{2+x}=1\)
\(\Leftrightarrow\sqrt{1-x}=1+\sqrt{2+x}\)
\(\Leftrightarrow1-x=1+2+x+2\sqrt{2+x}\)
\(\Leftrightarrow2\sqrt{2+x}=-2x-2\)
\(\Leftrightarrow\sqrt{2+x}=-\left(x+1\right)\left(x\le-1\right)\)
\(\Leftrightarrow2+x=x+1\)
\(\Leftrightarrow0x=1\)(Vô lí)
Vậy PT vô nghiệm
a. ĐKXĐ: \(-2\le x\le1\)
ta có :\(\sqrt{1-x}=1+\sqrt{2+x}\Leftrightarrow1-x=1+2\sqrt{2+x}+2+x\)
\(\Leftrightarrow-2-2x=2\sqrt{2+x}\Leftrightarrow-1-x=\sqrt{2+x}\Leftrightarrow\hept{\begin{cases}x\le-1\\x^2+2x+1=x+2\end{cases}\Leftrightarrow x=\frac{-1-\sqrt{5}}{2}}\)
b.ĐKXĐ: \(-4\le x\le1\)ta có :
\(\sqrt{1-x}+\sqrt{4+x}=3\Leftrightarrow1-x+2\sqrt{1-x}\sqrt{4+x}+4+x=9\)
\(\Leftrightarrow\sqrt{1-x}.\sqrt{4+x}=2\Leftrightarrow4-3x-x^2=4\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Áp dụng bất đẳng thức Bunhia ta có :
\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)
Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
dấu bằng xảy ra khi x=y=z=1
\(4\sqrt{x+3}-\sqrt{x-1}=7\left(1\right)\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow4\sqrt{x+3}=7+\sqrt{x-1}\)
\(\Leftrightarrow16\left(x+3\right)=49+x-1+14\sqrt{x+1}\)
\(\Leftrightarrow15x=14\sqrt{x-1}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow225x^2=196\left(x-1\right)\)
\(\Leftrightarrow225x^2-196x+196=0\)
\(\Delta=196^2-4.225.196< 0\)
\(\Rightarrow pt\)vô nghiệm
Vậy pt vô nghiệm.