Giao điểm của hai hình chéo hình bình hành ABCD là O.Gọi M,N,P,Q theo thứ tự là các giao điểm của các đường phân giác trong tam giác OAB,OBC,OCD,ODA.
a,CM tứ giác MNP là hình thoi
b,Hình bình hành ABCD phỉa có điều kiện gì để MNPQ là hình vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao mk lại
ghét toán hình
quáGame Play
hihi
chúc bn học gioi!
nhaE@@@@
xin lỗi mk chịu
mk mới học lớp 6
nhaE@@
oOo ko biết làm oOo
huhunguyen thi thuy trang
Đặt \(\sqrt{x^2-2}=a\left(a\ge0\right)\)
\(\Rightarrow x^2=a^2+2\)
Thế vào ta được
\(A=-\frac{a^2+100}{a}=-\left(a+\frac{100}{a}\right)\le-2\sqrt{100}=20\)
Đạt được khi \(\orbr{\begin{cases}x=\sqrt{102}\\x=-\sqrt{102}\end{cases}}\)
\(\frac{5y^2-6x^2+7xy}{3x^2-10y^2+xy}=\frac{\left(y+2x\right)\left(5y-3x\right)}{\left(2y+x\right)\left(3x-5y\right)}\)
\(=\frac{-y-2x}{2y+x}\)
Vậy A = - y - 2x
Dùng hằng đẳng thức đáng nhớ thôi b
Ta có y2 - x2 = (y - x)(y + x)
Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được
chiu thui à
mk ko thick toán hình cho lắm
nhaE@@@
hihivũ thị uyên phương^___^
Dùng hình bạn Ngọc nhé
Gọi K là giao điểm của MP và NQ
Kẽ MH, QE lần lược vuông góc với DC, BC tại H,E. I, F là giao điểm của QE với MP và MH
Ta có QE //DC
=> MIQ = MPH (góc đồng vị)
MIQ = QNE ( + NQE = 90)
=> MPH = QNE (1)
Xét tam giác QNE và tam giác MPH có
Góc MPH = góc QNE
Góc MHP = góc QEN = 90
MH = QE (cùng bằng cạnh hình vuông)
=> Tam giác QNE = tam giác MPH
=> NQ = PM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)