K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Thật ra bài này là một câu trắc nghiệm thôi và mình muốn có lời giải rõ ràng. Có 4 đáp án các bạn chọn và giải rõ ràng ra nhé.

Hệ số k tốt nhất là:

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C.  \(\frac{1}{4}\)

D. \(\frac{1}{5}\)

1 tháng 11 2016

K biết

...........

...

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

29 tháng 10 2016

A B I O O' M X Y Z

Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.

Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.

Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.

=> OX + OY = 1/2 AB là đại lượng không đổi

MZ là đường trung bình của hình thang O'YXO

=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB

Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).

Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB

30 tháng 10 2016

đáp án là M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB 

26 tháng 10 2016

\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)

\(\Leftrightarrow\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+cx\left(x-1\right)}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{a\left(x^2-3x+2\right)+b\left(x^2-2x\right)+c\left(x^2-x\right)}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2\left(a+b+c\right)-x\left(3a+2b+c\right)+2a}{x\left(x-1\right)\left(x-2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)

Sử dụng đồng nhất thức ta được \(\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\2a=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)

26 tháng 10 2016

Câu hỏi của Cao Thị Trà My - Toán lớp 8 | Học trực tuyến

26 tháng 10 2016

link vào h toàn lỗi, k gửi dc nên t mượn tạm lời giải vHỏi đáp Toán

25 tháng 10 2016

Cô sẽ trả lời bằng tiếng Việt !
Chia các số từ 1, tới 2008 thành các nhóm nhỏ:
1 ,2, ...., 9 : có số mà tổng các chữ số chia hết cho 5 là 5.
10,11......, 19
20,21,....., 29.
...............
2000, 2001, ......, 2008 có 2 số mà tổng các chữ số chia hết cho 5 là: 2003, 2008.
Thật vậy gọi 10 số trong mỗi nhóm còn lại  là: \(a_1,a_2,....,a_{10}\).
Ta chứng minh mỗi nhóm có đúng 2 số mà tổng các chữ số chia hết cho 5.
Thật vậy: Gọi tổng các chữ số của các số trong nhóm lần lượt là: \(x_1,x_2,x_3,....,x_{10}\)
Dễ thấy các \(x_1,x_2,x_3,.....,x_{10}\) là các số tự nhiên liên tiếp.
Lấy 5 số tự ban đầu là: \(x_1,x_2,x_3,x_4,x_5\). Trong 5 số tự nhiên liên tiếp này luôn có 1 số chia hết cho 5.
Gọi số đó là \(x_k,1\le k\le5\) thì số còn lại trong nhóm là: \(x_{k+5}\).
Vậy trong các số \(a_1,a_2,....,a_{10}\)luôn có 2 số mà tổng các chữ số chia hết cho 5.
Số các nhóm là: ( 2008 - 9  - 9 ) : 10 = 199 ( số).
Vậy số các số nguyên từ 1 tới 2008 mà có tổng các chữ số chia hết cho 5 là: 
 1 + 199 x 2 + 2 = 401 ( số)

 

24 tháng 10 2016

401 số nha bạn

lấy 2005/5=401

23 tháng 10 2016

A B C D E F 120 o 30 o

ACDF is a rectangle

\(S_{MAC}=S_{MCD}\) => (distance from M to AC) = CD/AC * (distance from M to CD) => \(M\in\)a straight line d passed C

Because FA/FD = CD/AC => FA = CD/AC * FD =>  \(F\in d\)

So \(M\in CF\)

23 tháng 10 2016

 tìm n nguyên dương sao cho n+1 , 6n+1 và 20n+1 là số chính phương.

23 tháng 10 2016

Ta có : \(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\left(1\right)\\\left(x+y\right)^2-2xy=325\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế : \(\left(x+y\right)^2-2\left(x+y\right)=215\)

Đặt \(t=x+y\) thì ta có pt : \(t^2-2t-215=0\Leftrightarrow\orbr{\begin{cases}t=1+6\sqrt{6}\\t=1-6\sqrt{6}\end{cases}}\)

1. Nếu \(t=1+6\sqrt{6}\) thì thay vào (1) ta được \(\hept{\begin{cases}x+y=1+6\sqrt{6}\\xy=-54+6\sqrt{6}\end{cases}}\)

Tới đây ta được hệ phương trình đối xứng loại I , bạn tự giải.

2. Nếu \(t=1-6\sqrt{6}\) thì thay vào (1) được \(\hept{\begin{cases}x+y=1-6\sqrt{6}\\xy=-54-6\sqrt{6}\end{cases}}\) 

Ta cũng được hệ pt đối xứng loại I.

23 tháng 10 2016

hi tui khong biet tui moi hoc lop 7 thui !

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

22 tháng 10 2016

Có phải đề như thế này không bạn

\(x^3+3xy+y^3-1\)

\(=\left(x+y\right)^3-1+3xy-3xy\left(x+y\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

19 tháng 10 2016

đề này sai phân tích kiểu mồ