K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Cach tuong tu 

AM-GM \(2+2yz=x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)

\(\Rightarrow1+yz\ge x\left(y+z\right)\Rightarrow x^2+x+yz+1\ge x\left(x+y+z+1\right)\)

\(\Rightarrow\frac{x^2}{x^2+x+yz+1}\le\frac{x}{x+y+z+1}\). Se cm \(x+y+z-xyz\le2\), that vay ap dung C-S 

\(x+y+z-xyz=x\left(1-yz\right)+\left(y+z\right)\)\(\le\sqrt{\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]}\)

\(=\sqrt{2\left(1+yz\right)\left[\left(yz\right)^2-2yz+2\right]}=\sqrt{y^2z^2\left(yz-1\right)+4}\le2\)

\(\Rightarrow M\le\frac{x}{x+y+z+1}+\frac{y+z}{x+y+z+1}+\frac{1}{x+y+z+1}=1\)

Dau "=" xay ra khi x=y=1; z=0

27 tháng 12 2016

mình mới học lớp 7 mí hihi

26 tháng 12 2016

Ta có

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(=\left(\frac{1}{x^2+y^2+z^2}+\frac{\frac{4}{9}}{2xy}+\frac{\frac{4}{9}}{2yz}+\frac{\frac{4}{9}}{2zx}\right)+\frac{7}{9}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\ge\frac{\left(1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{9}.\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{9}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)

\(=9+\frac{7}{9}.27=30\)

Vậy GTNN là 30 đạt được khi \(x=y=z=\frac{1}{3}\)

26 tháng 12 2016

lớp mấy

18 tháng 12 2016

ta có

  1+m =  \(\frac{2x^n}{x^n+\frac{1}{x^n}}\), 1-m = \(\frac{2}{x^n\left(x^n+\frac{1}{x^x}\right)}\)

=> \(\frac{1+m}{1-m}\)= x2n

do đó P = \(\frac{\frac{1+m}{1-m}-\frac{1-m}{1+m}}{\frac{1+m}{1-m}+\frac{1-m}{1+m}}\)\(\frac{\left(1+m\right)^2-\left(1-m\right)^2}{\left(1-m\right)\left(1+m\right)}\)\(\frac{\left(1-m\right)\left(1+m\right)}{\left(1+m\right)^2+\left(1-m\right)^2}\)

\(\frac{2m}{1+m^2}\)

17 tháng 12 2016

Đặt x​ 2n = a ta có

\(\frac{x^n-x^{-n}}{x^n+x^{-n}}=\frac{x^{2n}-1}{x^{2n}+1}=\frac{a-1}{a+1}=m\)

\(\Leftrightarrow a-1=m\left(a+1\right)\)

\(\Leftrightarrow a\left(1-m\right)=1+m\)

\(\Leftrightarrow a=\frac{1+m}{1-m}\)

Ta lại có

\(\frac{x^{2n}-x^{-2n}}{x^{2n}+x^{-2n}}=\frac{x^{4n}-1}{1+x^{4n}}=\frac{a^2-1}{1+a^2}\)

Tới đây thì e chỉ cần thế vô rồi rút gọn là ra nhé

5 tháng 10 2016

Bài này khá đơn giản, cô không vẽ hình nhé. 

Ta thấy DI // MC và \(DI=\frac{MC}{2}\). Tương tự EH // MC và EH = MC/2. Vậy thì EH // DI và EH = DI hay DIHE là hình bình hành.

Vậy DH giao EI tại trung điểm mỗi đường. 

Hoàn toàn tương tự KF giao DH tại trung điểm mỗi đường.

Vậy DH; EI; FK đồng quy.

12 tháng 12 2016

Thay abc = 2017 vào A ta có:

\(A=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

   \(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=1\)

14 tháng 12 2016

những dạng có cho tích hoặc tổng bằng một số nào đó và trog đa thức cần tính có tích hoặc tổng hoặc số đó thj kiểu j cx p thay vào bn ak.

hỳ mik tự rút đc kinh nghiệm đó mờ

9 tháng 3 2016

x=(mình k bit)

24 tháng 4 2016

x = 2 Phải ko bạn

23 tháng 11 2016

Ta có

\(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}\)

\(=\frac{n^2+n-2}{\left(n+1\right)n}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Áp dụng vào bài toán ta có

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+x}\right)=\frac{672}{2017}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+1\right)}=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1}{3}.\frac{x+2}{x}=\frac{672}{2017}\)

\(\Leftrightarrow2017x+4034=2016x\)

  1. \(\Leftrightarrow x=-4034\)
22 tháng 11 2016

Đề đúng không thế sao t ra đáp số là số âm ta

9 tháng 12 2016

Mình chỉ giải c thôi nhé :) Phần a, b nếu ai muốn biết hỏi @Nấm Chanel

A B C H E F K O I

Có \(\widehat{HEA}=\widehat{BAC}=90^o\) nên \(EH\text{//}AC\) hay \(EH\text{//}FK\)

Đồng thời tứ giác \(EHFA\) có 3 góc vuông nên là hình chữ nhật, tức EH = FA ( 2 cạnh đối ), mà AF = FK ( giả thiết ) nên EH = FK

Từ đó suy ra tứ giác EHKF là hình bình hành nên EK cắt HF tại trung điểm mỗi đường, hay I là trung điểm EK (1)

Đồng thời hình chữ nhật EHFA có hai đường chéo EF và AH cắt nhau tại O, nên O là trung điểm EF ( tính chất hình chữ nhật ) (2)

(1)(2)\(\Rightarrow\)OI là đường trung bình \(\Delta EKF\) , suy ra OI // FK, hay OI // AC

Vậy ...

9 tháng 12 2016

Mình sẽ giải bằng tiếng Việt cho dễ hiểu nhé :)

Đề bài : Cho \(f\left(x\right)=x^4+ax^3+b\) chia hết cho \(g\left(x\right)=x^2+1\) . Tính a + b

Theo đề , ta đặt \(f\left(x\right)=g\left(x\right).n\left(x\right)\) với \(n\left(x\right)=x^2+cx+d\)

Vậy thì : \(x^4+ax^3+b=\left(x^2+1\right).\left(x^2+cx+d\right)\)

\(\Leftrightarrow x^4+ax^3+b=x^4+cx^3+x^2\left(d+1\right)+cx+d\)

Sử dụng đồng nhất hệ thức, ta có a = c , d + 1 = 0 , c = 0 , b = d

Suy ra : a = 0 , b = -1

Vậy a + b = -1

23 tháng 12 2016

a + b  = -1 ban nha

9 tháng 12 2016

Theo lời của bạn Dung, Ngọc bổ sung cho Vũ thêm cách nữa nhé :

Nếu đề tương tự như cách 1 mình làm thì ta có : 

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow\left(a^2x^2+b^2y^2+c^2z^2\right)+a^2y^2+a^2z^2+b^2x^2+c^2x^2+b^2z^2+c^2y^2=\left(a^2x^2+b^2y^2+c^2z^2\right)+2\left(axby+bycz+czax\right)\)

\(\Leftrightarrow\left(a^2y^2-2aybx+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Mà mỗi hạng tử ở vế phải luôn không âm, do vậy :

\(\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\) \(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

9 tháng 12 2016

khó quá trời đất ơi!