chứng minh rằng các phân số sau có thể viết dưới dạng tổng các phân số có tử bằng 1 , mẫu dương và khác nhau
a) \(\frac{1}{6}\)
b) \(\frac{15}{22}\)
c) \(\frac{5}{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể là có. Bởi vì khi bạn xóa 2 số cuối thì được hiệu là 1 (vì là 2014 và 2015), rồi 2 số 2011 và 2013, 2012 và 2009,... thì bạn sẽ ra được hiệu là 1,2,3,4,... và ra hiệu là 0 với các số 1,2,3,4,... cho sẵn.
Mong rằng là đúng! (bạn có thể hỏi giáo viên của OLM bằng cách gửi tin nhắn theo địa chỉ: http://olm.vn/thanhvien/loanloan92 (tên đăng nhập là loanloan92 đó!!!)
CHÚC BẠN HỌC TỐT!
mik xin loi co the chu
2015-2014=1
2013-2012=1
cu the tren bang co
(2015-1):2=1007 con so 1
cong voi con so 1 con du ra thi co 1008 con so 1
roi tru xoa them
1008:2=504 con so 1
thi ta seco 504 con so 0
ma 0-0 =0 nen tren bang van co the co con so 0
Để pq+17 >2 là số nguyên tố thì pq là số chẵn
=> p chia hết 2 hoặc q chia hết 2
Vì p, q là số nguyên tố nên có 2 trường hợp xảy ra:
TH1: p=2
=> 7.p+q=7.2+q=14+q
q là số nguyên tố
+) q=3
Ta có: 7x2+3=17 là số nguyên tố
2x3+17=23 là số nguyên tố
=> q=3 thỏa mãn
+) q chia 3 dư 1 => q=3k+1 (k thuộc N)
7p+q=14+3k+1=15+3k chia hết cho 3 không phải là số nguyên tố
nên trường hợp này loại
+) q chia 3 dư 2 => q=3k+2 ( k thuộc N)
pq+17=(3k+2).2+17=6k+21 chia hết cho 3 không phải là số nguyên tố
nên trường hợp này cũng bị loại
Vậy p=2, q=3 là thỏa mãn
TH2: q=2
Ta có: 7p+q=7p+2
pq+17=2p+17
Vì: p là số nguyên tố ta có các trường hợp nhỏ sau:
+) Với p=3
=> 7p+2=23 là số nguyên tố
2p+17=23 là số nguyên tố
=> p =3 thỏa mãn
+) Với p chia 3 dư 1 => p=3k+1 ( k thuộc N)
7p+2=7(3k+1)+2=21k+9 chia hết cho 3 nên không phải là số nguyên tố nên loại
+Với p chia 3 dư 2 => p=3k+2
2p+17=2(3k+2)+17=6k+21 chia hết cho 3 nên không phải là số nguyên tố nên loại
Vậy q=2, p=3 là thỏa mãn
Kết luận cả 2 TH: p=2, q=3 hoawch q=2, p=3
Ta có : \(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+....+2014^{2015}}\)
\(=\frac{10101\cdot0}{2^3+3^4+4^5+....+2014^{2015}}=0\)
Vậy \(S=0\)
\(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=\frac{10101\cdot0}{2^3+3^4+4^5+...+2014^{2015}}\)
\(=0\)
\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)
\(p=2+3+...+n\)
\(p=n+n-1+...+2\)
\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)
\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)
- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)
nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).
- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)
do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).
Vậy \(p=2\)hoặc \(p=5\).
16p+1,16p,16p−116p+1,16p,16p−1là ba số nguyên liên tiếp nên 11trong 33số đó chia hết cho 33.
Có 16p+116p+1là số nguyên tố nên không chia hết cho 33.
16p16pkhông chia hết cho 33do 16⋮/316⋮̸3, pplà số nguyên tố
(nếu p=3p=3thì 16p+1=4916p+1=49không là số nguyên tố)
do đó 16p−116p−1chia hết cho 33do đó là hợp số.
Nhớ t.i.c.k mk nha
Quá dễ này bạn !!!
Xét vế phải là (2^y+1)(2^y+2)
TH1: y chẵn => 2^y chia 3 dư 1 => 2^y+2 chia hết cho 3 (1)
TH2: y lẻ => 2^y chia 3 dư 2 => 2^y+1 chia hết cho 3 (2)
Từ (1) và (2) thì với mọi y thuộc N thì (2^y+1)(2^y+2) chia hết cho 3
=> vế phải cũng chia hết cho 3
Nếu x>=1 => 3^x chia hết cho 3; 89 ko chia hết cho 3=> vế trái ko chia hết cho 3=> LOẠI
Nếu x=0 => 3^0+89=90 (TMĐK) => y=3
Vậy x=0 và y=3.
lili ơi cái này đậu phải trả lời lớp 6 đâu
mặc dủ mình k biết làm nhưng mình chắc câu trả lời của bạn hình như k phải cách giải lớp 6
nếu mình sai mình xin lỗi
Mình cũng xin góp 1 phần ý kiến về cách viết này
a/ \(\frac{1}{6}=\frac{1}{7}+\frac{1}{42}=\frac{1}{8}+\frac{1}{24}\) (tìm được 2 cái nên chép cả 2 cho b luôn)
b/ \(\frac{15}{22}=\frac{1}{2}+\frac{1}{11}+\frac{1}{12}+\frac{1}{132}\)
c/ \(\frac{5}{11}=\frac{1}{33}+\frac{1}{11}+\frac{1}{3}\)
Mình nghĩ bạn Lan Hương với Thùy Dung nên xem lại bài của 2 bạn nhé. Mình nghĩ là câu a và b 2 bạn chưa được chính xác lắm
mnh=9+789065=jhkil